Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 691-696    DOI: 10.11902/1005.4537.2020.225
  研究报告 本期目录 | 过刊浏览 |
水泥类型对海砂混凝土在生物硫酸腐蚀下劣化影响的研究
罗伟文, 季韬(), 林魁
福州大学土木工程学院 福州 350108
Influence of Cement Type on Deterioration of Sea Sand Concrete Subjected to Corrosion of Biological Sulfuric Acid
LUO Weiwen, JI Tao(), LIN Kui
College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
全文: PDF(5740 KB)   HTML
摘要: 

采用硫铝酸盐水泥 (SAC) 以及普通硅酸盐水泥 (OPC) 制备海砂混凝土,采用T.t细菌 (氧化硫硫杆菌) 模拟不同pH (1.0,1.5和2.0) 生物硫酸腐蚀,测试质量损失率、抗压强度、腐蚀层pH、Cl-固化率和孔结构,并通过SEM/EDS、XRD分析不同海砂混凝土在耐生物硫酸腐蚀性能上的差异。结果表明:在生物硫酸腐蚀下,OPC、SAC海砂混凝土部分水化产物分解,主要腐蚀产物为CaSO4·2H2O。在质量损失率、强度下降、氯离子固化和孔结构方面,SAC海砂混凝土抗生物硫酸腐蚀性能优于OPC海砂混凝土。

关键词 水泥类型硫铝酸盐水泥生物硫酸海砂混凝土劣化    
Abstract

Two types of sea sand concretes were prepared with sulphate aluminum cement (SAC) and ordinary Portland cement (OPC), respectively. Herein, T.t bacteria (thiobacillus thiooxidans) was used to simulate biological sulfuric acid corrosive media with different pH values (1.0, 1.5 and 2.0). Then, the effect of cement type on the degradation of sea sand concretes in simulated biological sulfuric acid corrosive media was characterized in terms of mass loss rate, compressive strength, pH value of corroded layer, fraction of solidified chlorides and pore. The results show that the hydration products of sea sand concrete with OPC or SAC were partially decomposed during the biological sulfuric acid corrosion, and the main corrosion product was CaSO4·2H2O. In biological sulfuric acid corrosive environments, the sea sand concrete with SAC presents better performance than that with OPC in terms of mass loss rate, strength deterioration, solidified fraction of chlorides and pore structure.

Key wordscement type    sulphate aluminum cement    biological sulfuric acid    sea sand concrete    deterioration
收稿日期: 2020-11-05     
ZTFLH:  TU528.01  
基金资助:国家自然科学基金(51479036)
通讯作者: 季韬     E-mail: jt72@163.com
Corresponding author: JI Tao     E-mail: jt72@163.com
作者简介: 罗伟文,男,1997年生,硕士生

引用本文:

罗伟文, 季韬, 林魁. 水泥类型对海砂混凝土在生物硫酸腐蚀下劣化影响的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 691-696.
Weiwen LUO, Tao JI, Kui LIN. Influence of Cement Type on Deterioration of Sea Sand Concrete Subjected to Corrosion of Biological Sulfuric Acid. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 691-696.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.225      或      https://www.jcscp.org/CN/Y2021/V41/I5/691

No.OPCSACSea sandWaterAggregateSuperplasticizerRetarder
SP515054516512705.660
SS051554516512705.661.55
表1  混凝土配合比
Code<20 nm20~50 nm50~200 nm>200 nm
SP1.00.001.6331.9666.41
SP1.50.002.7629.0268.22
SP2.00.003.1135.1161.78
SS1.00.001.3335.1563.52
SS1.50.005.2133.5461.25
SS2.00.002.7630.6666.58
表2  OPC、SAC海砂混凝土生物硫酸腐蚀84 d后的孔径分布
图1  海砂混凝土在生物硫酸腐蚀前后表面层XRD谱
图2  SP1.0和SS1.0腐蚀界面及腐蚀产物
图3  OPC和SAC海砂混凝土在生物硫酸腐蚀时形成的腐蚀层的pH值和Cl-固化率
图4  OPC和SAC海砂混凝土在生物硫酸腐蚀时的质量损失率和抗压强度变化
1 Parker C D. The corrosion of concrete [J]. Aust. J. Exp. Biol. Med. Sci., 1945, 23: 81
2 Buchanan. Berger's Handbook of Bacterial Identification [M]. Eighth Edition. Beijing: Science Press, 1984
2 布坎南. 伯杰细菌鉴定手册. 8版 [M]. 北京: 科学出版社, 1984
3 Estokova A, Kovalcikova M, Luptakova A, et al. Testing silica fume-based concrete composites under chemical and microbiological sulfate attacks [J]. Materials, 2016, 9: 324
4 Huang Z R, Liang X Y, Zeng J. Preliminary study on effects of accrete organisms of artificial reef material [J]. South China Fish. Sci., 2006, 2(1): 34
4 黄梓荣, 梁小芸, 曾嘉. 人工鱼礁材料生物附着效果的初步研究 [J]. 南方水产, 2006, 2(1): 34
5 Chen Y, Tian T, Zhao Z Y, et al. The feasibility of congealing stone materials used as artificial reef-the species composition and biomass of organisms attached to the tested modules [J]. J. Dalian Fish.Univ., 2012, 27(4): 344
5 陈勇, 田涛, 赵子仪等. 凝石胶凝材料作为人工鱼礁材料的可行性研究II—供试体附着生物种类与生物量 [J]. 大连海洋大学学报, 2012, 27(4): 344
6 Zhang X W, Zhang X. Present and prospect of microbial corrosion prevention of concrete [J]. Mater. Prot., 2005, 38(11): 44
6 张小伟, 张雄. 混凝土微生物腐蚀防治研究现状和展望 [J]. 材料保护, 2005, 38(11): 44
7 Li Z Z, Gong P H, Guan C T, et al. Study on the organisms attachment of artificial reefs constructed with five different cements [J]. Prog. Fish. Sci., 2017, 38(5): 57
7 李真真, 公丕海, 关长涛等. 不同水泥类型混凝土人工鱼礁的生物附着效果 [J]. 渔业科学进展, 2017, 38(5): 57
8 Qin L K, Song Y P, Zhao D F. Research on the durability of reinforced concrete in ocean environment [J]. Concrete, 2002, (12): 3
8 覃丽坤, 宋玉普, 赵东拂. 处于海洋环境的钢筋混凝土耐久性研究 [J]. 混凝土, 2002, (12): 3
9 Wang S J, Liu X Q, Dai Q F, et al. Distribution characteristics of marine aggregate resources and potential prospect in China [J]. Mar. Geol. Quat. Geol., 2003, 23(3): 83
9 王圣洁, 刘锡清, 戴勤奋等. 中国海砂资源分布特征及找矿方向 [J]. 海洋地质与第四纪地质, 2003, 23(3): 83
10 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of ordinary concrete [S]. Beijing: China Construction Industry Press, 2011
10 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程 [S]. 北京: 中国建筑工业出版社, 2011
11 Wu Z W, Lian H Z. High Performance Concrete [M]. Beijing: China Railway Press, 1999
11 吴中伟, 廉慧珍. 高性能混凝土 [M]. 北京: 中国铁道出版社, 1999
12 Femenias Y S, Angst U, Moro F, et al. Development of a novel methodology to assess the corrosion threshold in concrete based on simultaneous monitoring of pH and free chloride concentration [J]. Sensors, 2018, 18: 3101
13 Gao L. Experimental study on concrete durability under carbonation and acid rain corrosion [D]. Xi'an: Xi'an University of Architecture and Technology, 2008
13 高丽. 碳化和酸雨共同作用下混凝土耐久性的试验研究 [D]. 西安: 西安建筑科技大学, 2008
14 Suryavanshi A K, Scantlebury J D, Lyon S B. Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate [J]. Cem. Concr. Res., 1996, 26: 717
15 Wang X G. Investigation on binding and microstructure of chloride ions during transport in cement-based materials [D]. Changsha: Hunan University, 2013
15 王小刚. 氯离子在水泥基材料传输过程中的结合及微观结构研究 [D]. 长沙: 湖南大学, 2013
16 Page C L, Short N R, Tarras A E. Diffusion of chloride ions in hardened cement pastes [J]. Cem. Concr. Res., 1981, 11: 395
17 Page C L, Short N R, Holden W R, et al. The influence of different cements on chloride-induced corrosion of reinforcing steel [J]. Cem. Concr. Res., 1986, 16: 79
18 Zhang X W, Zhang X. Mechanism and research approach of microbial corrosion of concrete [J]. J. Build. Mater., 2006, 9: 52
18 张小伟, 张雄. 混凝土微生物腐蚀的作用机制和研究方法 [J]. 建筑材料学报, 2006, 9: 52
19 Kumar R, Bhattacharjee B. Porosity, pore size distribution and in situ strength of concrete [J]. Cem. Conc. Res., 2003, 33: 155
20 Zhao J, Cai G C, Gao D Y. Analysis of mechanism of resistance to chloride ion erosion of sulphoaluminate cement concrete [J]. J. Build. Mater., 2011, 14: 357
20 赵军, 蔡高创, 高丹盈. 硫铝酸盐水泥混凝土抗氯离子侵蚀机理分析 [J]. 建筑材料学报, 2011, 14: 357
21 Chen C Y. Corrosion mechanism of artificial reef reinforced concrete attacked by biological sulfuric acid [D]. Fuzhou: Fuzhou University, 2015
21 陈彩艺. 生物硫酸对人工鱼礁钢筋混凝土的腐蚀机理 [D]. 福州: 福州大学, 2015
22 Gao R D. Micro-macro degradation regularity of sulfate attack on concrete under complex environments [D]. Beijing: Tsinghua University, 2010
22 高润东. 复杂环境下混凝土硫酸盐侵蚀微—宏观劣化规律研究 [D]. 北京: 清华大学, 2010
[1] 丁健,张伟,王佳,陈亚林,尹鹏飞,张波. WBE技术研究水线区涂层劣化和涂层下金属腐蚀-I[J]. 中国腐蚀与防护学报, 2016, 36(5): 463-470.
[2] 雍兴跃,吉静,张雅琴,李栋梁,张占佳. 微/纳米力学技术对金属空泡腐蚀表层力学性质的定量表征[J]. 中国腐蚀与防护学报, 2011, 31(1): 40-45.