Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 659-666    DOI: 10.11902/1005.4537.2020.244
  研究报告 本期目录 | 过刊浏览 |
有机氨基醇阻锈剂在混凝土模拟孔隙液和砂浆试块中对钢筋的阻锈作用
马麒1, 蔡景顺1(), 穆松1, 周霄骋1, 刘凯1, 刘建忠1, 刘加平1,2
1.江苏苏博特新材料股份有限公司 高性能土木工程材料国家重点实验室 南京 211103
2.东南大学材料科学与工程学院 南京 211189
Composite Organic Compound as Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Mortar Specimen
MA Qi1, CAI Jingshun1(), MU Song1, ZHOU Xiaocheng1, LIU Kai1, LIU Jianzhong1, LIU Jiaping1,2
1.State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co. Ltd. , Nanjing 211103, China
2.School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
全文: PDF(9320 KB)   HTML
摘要: 

制备了有机氨基醇阻锈剂 (ZX),通过干湿循环实验、线性极化 (LPR) 和电化学阻抗谱 (EIS) 测试、扫描电镜 (SEM) 分析,研究了ZX以及N,N-二甲基乙醇胺 (DMEA) 在混凝土模拟孔隙液以及砂浆试块中对钢筋的阻锈作用。结果表明,在混凝土模拟孔隙液中加入ZX以及DMEA均有良好的阻锈效果;干湿循环实验中,当掺量为0.75%时,ZX与DMEA的阻锈效率分别为98.63%以及78.05%。在电化学实验中,随着阻锈剂掺量的增加,阻锈剂对钢筋腐蚀的抑制作用越明显;且在相同浓度下,ZX的阻锈效果优于DMEA的。此外,砂浆试块结果表明,初始时阻锈剂均可有效抑制钢筋的腐蚀,但是随着循环次数的增加,DMEA抑制腐蚀的效果减弱较为明显,而ZX可有效延缓钢筋的起始锈蚀时间,且在砂浆试块中ZX抑制钢筋腐蚀的效果优于DMEA。

关键词 有机氨基醇N,N-二甲基乙醇胺混凝土模拟孔隙液阻锈剂砂浆    
Abstract

Composite organic amino-alcohol compound (ZX) and N,N-dimethylethanolamine (DMEA) are prepared as corrosion inhibitors for reinforced steel in simulated conceret pore solution or mortar specimens. Then their corrosion inhibition performance was assessed by means of dry and wet cycle experiments, liner polarization resistance (LPR) measurements, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The results indicate that inhibitors ZX and DMEA present good inhibition efficiency for steel bar in the simulated pore solutions of concrete. The corrosion inhibition efficiency by the pore solution with the dosage of 0.75%ZX and DMEA is 98.63% and 78.05% respectively in the dry-wet cycle experiments. The electrochemical experiments show that the corrosion inhibition effect of inhibitor on steel is more obvious with the increasing inhibitor dosage, whilst the inhibition effect of ZX is better than DMEA by the same dosage. Furthermore, the mortar experiments reveal that with the increase of the number of cycles, the weakening of corrosion inhibition effect of DMEA is obvious, whilst the organic amino-alcohol inhibitor can effectively delay the time for corrosion initiation of the steel bar, thus ZX is better than DMEA in corrosion inhibition within mortar specimens.

Key wordscomposite organic compound    N    N-dimethylethanolamine    simulated conceret pore solution    corrosion inhibitor    mortar specimen
收稿日期: 2020-11-25     
ZTFLH:  TU528  
基金资助:广东省重点领域研发计划(2019B111106002);中国铁路总公司科技研究开发计划(P2018G047);国家自然科学基金(51908254);江苏省住房和城乡建设厅科技项目(2018JH017)
通讯作者: 蔡景顺     E-mail: caijingshun@gmail.com
Corresponding author: CAI Jingshun     E-mail: caijingshun@gmail.com
作者简介: 马麒,男,1991年生,硕士,工程师

引用本文:

马麒, 蔡景顺, 穆松, 周霄骋, 刘凯, 刘建忠, 刘加平. 有机氨基醇阻锈剂在混凝土模拟孔隙液和砂浆试块中对钢筋的阻锈作用[J]. 中国腐蚀与防护学报, 2021, 41(5): 659-666.
Qi MA, Jingshun CAI, Song MU, Xiaocheng ZHOU, Kai LIU, Jianzhong LIU, Jiaping LIU. Composite Organic Compound as Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Mortar Specimen. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 659-666.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.244      或      https://www.jcscp.org/CN/Y2021/V41/I5/659

InhibitorMass fraction / %A / %R / %IE / %
Blank0.0052.10------
ZX0.307.3714.1585.85
0.454.298.2391.77
0.602.134.0995.91
0.750.711.3798.63
DMEA0.3019.5637.5462.46
0.4515.7230.1769.83
0.6012.9524.8675.14
0.7511.4421.9578.05
表1  Q235钢筋试片在添加不同浓度ZX阻锈剂的SCP中的干湿循环实验结果
图1  Q235钢筋在含有不同浓度阻锈剂的SCP溶液中浸泡后的表面形貌
图2  钢筋电极在空白和添加不同阻锈剂的SCP溶液中的腐蚀电位和电流密度随浸泡时间的变化
图3  钢筋电极在含有不同浓度DMEA和ZX的混凝土模拟孔隙液中的EIS谱图
图4  拟合EIS的等效电路
InhibitorMass fraction / %Rs / Ω·cm2CPE1-Y0 / μΩ-1·S-n·cm-2Rf / kΩ·cm2CPE2-Y0 / μΩ-1·S-n·cm-2Rct / kΩ·cm2IE / %
Blank0.008.70689.461.5476.306.73---
DMEA0.308.26463.153.9150.1614.9556.15
0.458.91390.475.7850.2522.6670.92
0.609.30350.915.9643.6927.6375.38
0.7510.60234.126.3440.1932.0678.46
ZX0.309.45189.437.0132.4565.3288.56
0.4510.11145.757.7930.19143.3794.52
0.6010.45106.318.6929.45264.5996.97
0.7511.2376.649.1521.76456.8698.22
表2  EIS拟合后的电化学参数
图5  钢筋电极在不含和含有不同阻锈剂砂浆试块中的腐蚀电位和极化电阻随干湿循环次数的变化
图6  原始钢筋以及未加阻锈剂,加入DMEA或ZX的砂浆试块中经干湿循环90次后钢筋的表面形貌
图7  经90次循环并破碎砂浆试块后钢筋的宏观形貌
1 Ormellese M, Berra M, Bolzoni F, et al. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures [J]. Cem. Concr. Res., 2006, 36: 536
2 Zhang Y, Jiang L X. Research trends of concrete carbonation and reinforcement corrosion [J]. Fuzhou Univ. (Nat. Sci.), 1996, 24(S): 18
2 张誉, 蒋利学. 混凝土碳化和钢筋锈蚀研究动态 [J]. 福州大学学报 (自然科学版), 1996, 24(): 18
3 Liu Y C, Sun B Y. Technique and usage of inspecting steel bar corrosion in hydraulic concrete [J]. Zhejiang Hydrotech., 2003, 38(2): 38
3 刘超英, 孙伯永. 水工混凝土中钢筋锈蚀检测技术及应用 [J]. 浙江水利科技, 2003, 38(2): 38
4 Zhang Q H, Xin J. Inhibiting effect of calcium nitrite on rebar chloride-attack corrosion [J]. Mater. Prot., 1999, 32(11): 7
4 张青红, 辛剑. 亚硝酸钙对混凝土结构中钢筋氯腐蚀的缓蚀作用 [J]. 材料保护, 1999, 32(11): 7
5 Hong N F. Corrosion and protective technology of rebar in concrete-rebar inhibitor idmixture and cathode protection [J]. Ind. Constr., 2000, 30(1): 57
5 洪乃丰. 混凝土中钢筋腐蚀与防护技术 (6)—钢筋阻锈剂和阴极保护 [J]. 工业建筑, 2000, 30(1): 57
6 Fajardo G, Escadeillas G, Arliguie G. Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by “artificial” sea-water [J]. Corros. Sci., 2006, 48: 110
7 Chaussadent T, Nobel-Pujol V, Farcas F, et al. Effectiveness conditions of sodium monofluorophosphate as a corrosion inhibitor for concrete reinforcements [J]. Cem. Concr. Res., 2006, 36: 556
8 Lee H S, Ryu H S, Park W J, et al. Comparative study on corrosion protection of reinforcing steel by using amino alcohol and lithium nitrite inhibitors [J]. Materials, 2015, 8: 251
9 Ma Q, Qi S J, He X H, et al. 1, 2, 3-Triazole derivatives as corrosion inhibitors for mild steel in acidic medium: Experimental and computational chemistry studies [J]. Corros. Sci., 2017, 129: 91
10 Zhang H, Liu Z Y. Study on the anticorrosion of alcamines inhibitor on reinforcement in simulated concrete pore solution [J]. Concrete, 2014, 295(5): 87
10 张鹤, 刘宗玉. 醇胺类有机物对混凝土模拟孔溶液中钢筋的阻锈作用研究 [J]. 混凝土, 2014, 295(5): 87
11 Jamil H E, Shrii A, Boulif R, et al. Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor [J]. Cem. Concr. Compos., 2005, 27: 671
12 Angst U M, Elsener B, Larsen C K, et al. Chloride induced reinforcement corrosion: Electrochemical monitoring of initiation stage and chloride threshold values [J]. Corros. Sci., 2011, 53: 1451
13 Shi H S, Wang Q. Research on service life prediction of marine concrete [J]. J. Build. Mater., 2004, 7: 161
13 施惠生, 王琼. 海工混凝土使用寿命预测研究 [J]. 建筑材料学报, 2004, 7: 161
14 Yao J C, Yao Y, Wang L, et al. Research progress of chloride ion transport in concrete under the action of multi-factor coupling [J]. Low Temper. Archit. Technol., 2011, (4): 5
14 孙继成, 姚燕, 王玲等. 多因素耦合作用下混凝土中氯离子传输的研究进展 [J]. 低温建筑技术, 2011, (4): 5
15 Amey S L, Johnson D A, Miltenberger M A, et al. Predicting the service life of concrete marine structures: an environmental methodology [J]. ACI Struct. J., 1998, 95: 205
16 Sun G W, Zhang Y S, Sun W, et al. Multi-scale prediction of the effective chloride diffusion coefficient of concrete [J]. Constr. Build. Mater., 2011, 25: 3820
17 Sagüés A A, Kranc S C, Moreno E I. Evaluation of electrochemical impedance with constant phase angle component from the galvanostatic step response of steel in concrete [J]. Electrochim. Acta, 1996, 41: 1239
18 Ministry of Transport of the People's Republic of China. Corrosion inhibitor for reinforcing steel in concrete [S]. Beijing: China Communications Press, 2018
18 中华人民共和国交通运输部. 钢筋混凝土阻锈剂 [S]. 北京: 人民交通出版社, 2018
19 Chen Y X, Feng L J, Cai J B, et al. Inhibition effect of a new composite organic inhibitor on corrosion of steel rebar in simulated concrete solution or inside mortar specimen [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 343
19 陈云翔, 冯丽娟, 蔡建宾等. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制 [J]. 中国腐蚀与防护学报, 2018, 38: 343
20 Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochim. Acta, 1990, 35: 1501
21 Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
21 达波, 余红发, 麻海燕等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260
22 Zhang C, Duan H B, Zhao J M. Synergistic inhibition effect of imidazoline derivative and L-cysteine on carbon steel corrosion in a CO2-saturated brine solution [J]. Corros. Sci., 2016, 112: 160
23 Xiong C S, Li W H, Jin Z Q, et al. Preparation of phytic acid conversion coating and corrosion protection performances for steel in chlorinated simulated concrete pore solution [J]. Corros. Sci., 2018, 139: 275
24 Al-Mehthel M, Al-Dulaijan S, Al-Idi S H, et al. Performance of generic and proprietary corrosion inhibitors in chloride-contaminated silica fume cement concrete [J]. Constr. Build. Mater., 2009, 23: 1768
25 Wang X M, Yang H Y, Wang F H. A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions [J]. Corros. Sci., 2010, 52: 1268
26 Abd El Haleem S M, Abd El Wanees S, Abd El Aal E E, et al. Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions [J]. Corros. Sci., 2010, 52: 292
27 Zhou X, Yang H Y, Wang F H. Investigation on the inhibition behavior of a pentaerythritol glycoside for carbon steel in 3.5%NaCl saturated Ca(OH)2 solution [J]. Corros. Sci., 2012, 54: 193
28 Alonso C, Castellote M, Andrade C. Chloride threshold dependence of pitting potential of reinforcements [J]. Electrochim. Acta, 2002, 47: 3469
29 Ormellese M, Lazzari L, Goidanich S, et al. A study of organic substances as inhibitors for chloride-induced corrosion in concrete [J]. Corros. Sci., 2009, 51: 2959
30 Al-Sodani K A A, Al-Amoudi O S B, Maslehuddin M, et al. Efficiency of corrosion inhibitors in mitigating corrosion of steel under elevated temperature and chloride concentration [J]. Constr. Build. Mater., 2018, 163: 97
[1] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[2] 陈云翔, 冯丽娟, 蔡建宾, 王璇, 洪毅成, 林德源, 庄建煌, 杨怀玉. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[3] 吕晨曦, 魏英华, 李京, 孙超. 聚合物改性砂浆中钢筋的电化学行为及聚合物改性混凝土抗Cl-渗透性[J]. 中国腐蚀与防护学报, 2015, 35(5): 467-473.
[4] 周欣, 陈韧, 杨怀玉, 王福会. 糖苷对碱性溶液中钢筋表面钝化膜性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 125-130.
[5] 钟世云; 史美伦; 陈志源 . 聚合物涂层沙浆试样的交流阻抗谱研究[J]. 中国腐蚀与防护学报, 2003, 23(2): 103-106 .
[6] 骆素珍; 鲁自界; 郑玉贵 . 环氧粉末涂层的冲蚀性能及其与固化度之间的关系[J]. 中国腐蚀与防护学报, 2000, 20(4): 193-199 .
[7] 刘晓敏; 史志明; 许刚 . 硫酸盐和温度对钢筋腐蚀行为的影响[J]. 中国腐蚀与防护学报, 1999, 19(1): 55-59 .