Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 837-842    DOI: 10.11902/1005.4537.2020.183
  研究报告 本期目录 | 过刊浏览 |
组织配分对2002双相不锈钢点蚀萌生及扩展的影响
雷哲缘, 汪毅聪, 胡骞(), 黄峰, 刘静
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 湖北省海洋工程材料及 服役安全工程技术研究中心 430081
Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel
LEI Zheyuan, WANG Yicong, HU Qian(), HUANG Feng, LIU Jing
Hubei Engineering Technology Research Center of Materials and Service Safety, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(4594 KB)   HTML
摘要: 

通过固溶处理得到含有不同占比和元素含量组成相的2002双相不锈钢试样,采用恒电位极化、动电位扫描和表面形貌分析,研究并探讨了组织配分对点蚀萌生及扩展规律及机理的影响。结果表明,随着固溶温度升高,主要合金元素向γ相聚集,α相含量增加,但耐蚀性下降,点蚀更倾向于在弱相α相上萌生,2002双相不锈钢整体点蚀抗性降低。点蚀发生时具有蕾丝花边形貌,蕾丝盖下的点蚀坑具有浅而宽的碟形特征。2002双相不锈钢点蚀抗性越好,点蚀坑越容易沿宽度方向扩展,对深度方向的扩展影响不大。

关键词 双相不锈钢组织配分点蚀萌生点蚀扩展    
Abstract

Test pieces of 2002 duplex stainless steel composed of different proportion of phases with various amount of alloying elements were prepared by solution treatment. The effect of microstructure partition on the pitting initiation and propagation of the steel in 3.5% (mass fraction) NaCl solution were investigated by means of potentiostatic polarization, potentiodynamic scanning and surface morphology analysis. Results show that with the increase of solution treatment temperature, the main alloying elements gather to γ phase, the volume faction of α phase increases but the anti-corrosion property of the steel decreases, therewith, pitting initiates on α phase more easily. As a consequence, the pitting resistance of 2002 DSS decreases. The formed pits present lacework-like morphology, beneath the cover of a lacework there is a dish-lie pit with larger mouth opening but shallower depth. In a word, 2002 duplex stainless steel exhibits better corrosion resistance, which may be ascribed to that the formed pits on the steel surface tend preferentially to grow laterally but not deeply.

Key wordsduplex stainless steel    microstructure distribution    pitting initiation    pitting propagation
收稿日期: 2020-10-03     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51871171)
通讯作者: 胡骞     E-mail: huqian@wust.edu.cn
Corresponding author: HU Qian     E-mail: huqian@wust.edu.cn
作者简介: 雷哲缘,男,1997年生,硕士生

引用本文:

雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
Zheyuan LEI, Yicong WANG, Qian HU, Feng HUANG, Jing LIU. Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 837-842.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.183      或      https://www.jcscp.org/CN/Y2021/V41/I6/837

图1  3种2002双相不锈钢试样金相组织
SampleSolution treatment temperaturePhaseVolume fraction %Mass fraction / %
CrMoN
1#---α53.322.00±0.790.35±0.060.05
γ46.718.86±0.750.21±0.070.31
2#1100 ℃α57.421.87±0.680.32±0.100.05
γ42.619.13±0.690.31±0.080.34
3#1200 ℃α68.421.60±0.740.29±0.060.05
γ31.619.73±0.690.35±0.060.43
表1  3种2002双相不锈钢试样α和γ两相占比和主要元素分布
图2  3种2002双相不锈钢试样阳极极化曲线
图3  2002双相不锈钢试样恒电位极化后的点蚀形貌和点蚀密度
图4  2002双相不锈钢试样恒电位极化后的点蚀形貌和三维尺寸
图5  3种2002双相不锈钢试样中α和γ相的PREN值
图6  两种试样在恒电位极化后表面蕾丝花边形貌
图7  蕾丝盖形成示意图
图8  不同耐蚀性试样蚀坑横向扩展示意图
1 Wu D C, Han P D. Effects of moderate temperature aging treatment on corrosion resistance of SAF2304 duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 51
1 武栋才, 韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 51
2 Tong H S, Sun Y H, Su Y J, et al. Investigation on Hydrogen-induced cracking behavior of 2205 duplex stainless steel used for marine structure [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 130
2 童海生, 孙彦辉, 宿彦京等. 海工结构用2205双相不锈钢氢致开裂行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 130
3 Pang X G, Liu R Q, Wang W T, et al. Effect of aging temperature on microstructure and corrosion resistance of S32750 super duplex stainless steel in hydrofluoric acid [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 519
3 逄旭光, 刘润青, 王文涛等. 时效温度对S32750超级双相不锈钢组织和抗氢氟酸腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 519
4 Yang Y Z. Investigatating pitting and crevice corrosion behavior of nickel conservation duplex stainless steel [D]. Shanghai: Fudan University, 2013
4 杨雁泽. 资源节约型双相不锈钢点蚀和缝隙腐蚀行为研究 [D]. 上海: 复旦大学, 2013
5 Han D. Investigation on the mechanism of localized electrochemical corrosion behavior of duplex stainless steel [D]. Shanghai: Fudan University, 2012
5 韩冬. 双相不锈钢局部电化学失效行为与机理的研究 [D]. 上海: 复旦大学, 2012
6 Zhang L H, Zhang W, Jiang Y M, et al. Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101 [J]. Electrochim. Acta, 2009, 54: 5387
7 Zhang L H. Study on the corrosion behavior of economical duplex stainless steel 2101 [D]. Shanghai: Fudan University, 2013
7 张丽华. 经济型双相不锈钢2101的腐蚀行为研究 [D]. 上海: 复旦大学, 2010
8 Guo Y J, Sun T Y, Hu J C, et al. Microstructure evolution and pitting corrosion resistance of the Gleeble-simulated heat-affected zone of a newly developed lean duplex stainless steel 2002 [J]. J. Alloy. Compd., 2016, 658: 1031
9 Feng H, Song Z G, Wu X H, et al. Relationship between selective corrosion behavior and duplex structure of 022Cr25Ni7Mo4N duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 138
9 丰涵, 宋志刚, 吴晓涵等. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究 [J]. 中国腐蚀与防护学报, 2019, 39: 138
10 Ernst P, Laycock N J, Moayed M H, et al. The mechanism of lacy cover formation in pitting [J]. Corros. Sci., 1997, 39: 1133
11 Ernst P, Newman R C. Pit growth studies in stainless steel foils. I. Introduction and pit growth kinetics [J]. Corros. Sci., 2002, 44: 927
12 Ernst P, Newman R C. Pit growth studies in stainless steel foils. II. Effect of temperature, chloride concentration and sulphate addition [J]. Corros. Sci., 2002, 44: 943
13 Chen Z G, Zhang G F, Bobaru F. The Influence of passive film damage on pitting corrosion [J]. J. Electrochem. Soc., 2016, 163: C19
14 Scheiner S, Hellmich C. Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary [J]. Corros. Sci., 2007, 49: 319
[1] 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[4] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[5] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[6] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[7] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[8] 逄旭光, 刘润青, 王文涛, 史艳华, 李飞, 梁平. 时效温度对S32750超级双相不锈钢组织和抗氢氟酸腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 519-525.
[9] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[10] 孙朝晖,Masoumeh Moradi,杨丽景,Robabeh Bagheri,宋振纶,陈艳霞. 越南芽孢杆菌对2507双相不锈钢加速腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 659-664.
[11] 何进, 晏敏胜, 杨丽景, Masoumeh Moradi, 宋振纶, 蒋业华. S32750超级双相不锈钢在NaCl溶液中的临界点蚀温度及电化学腐蚀机理[J]. 中国腐蚀与防护学报, 2015, 35(2): 106-112.
[12] 王永霞, 向红亮, 杨彩萍, 刘东. 含铜双相不锈钢在无菌/含菌环境下的耐蚀性研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 558-565.
[13] 刘佐嘉 程学群 李晓刚 刘小辉. 点缺陷模型在2205双相不锈钢中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 90-96.
[14] 张雨,王均,石树坤,王院生. 时效对2205双相不锈钢在硫环境下的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(6): 496-500.
[15] 付燕 . 双相不锈钢在含硝酸体系的优选腐蚀行为研究[J]. 中国腐蚀与防护学报, 2004, 24(5): 272-275 .