|
|
基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为 |
戴明杰1,2, 刘静1,2( ), 黄峰1,2, 胡骞1,2, 李爽1 |
1 武汉科技大学 省部共建冶金与耐火国家重点实验室 武汉 430081 2 武汉科技大学 湖北省海洋工程材料及服役安全工程技术研究中心 武汉 430081 |
|
Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method |
DAI Mingjie1,2, LIU Jing1,2( ), HUANG Feng1,2, HU Qian1,2, LI Shuang1 |
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 2 Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China |
引用本文:
戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
Mingjie DAI,
Jing LIU,
Feng HUANG,
Qian HU,
Shuang LI.
Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 425-431.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.267
或
https://www.jcscp.org/CN/Y2020/V40/I5/425
|
[1] |
Li X M, Rosas O, Castaneda H. Deterministic modeling of API5L X52 steel in a coal-tar-coating/cathodic-protection system in soil [J]. Int. J. Pres. Ves. Piping., 2016, 146: 161
|
[2] |
Xue Z Y, Bi W X, Chen Z H, et al. Situation and outlook for cathodic protection technology of oil & gas pipeline [J]. Oil Gas Storage Trans., 2014, 33: 938
|
[2] |
(薛致远, 毕武喜, 陈振华等. 油气管道阴极保护技术现状与展望 [J]. 油气储运, 2014, 33: 938)
|
[3] |
Gadala I M, Wahab M A, Alfantazi A. Numerical simulations of soil physicochemistry and aeration influences on the external corrosion and cathodic protection design of buried pipeline steels [J]. Mater. Des., 2016, 97: 287
|
[4] |
Fu A Q, Cheng Y F. Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution [J]. Corros. Sci., 2010, 52: 612
|
[5] |
Zhang Y X, Du Y X, Jiang Z T. Influence of alternating current interference on cathodic protection system of buried pipelines [J]. Corros. Prot., 2013, 34: 350
|
[5] |
(张玉星, 杜艳霞, 姜子涛. 交流干扰对埋地管线阴极保护的影响 [J]. 腐蚀与防护, 2013, 34: 350)
|
[6] |
Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
|
[7] |
Li D D. Study on the interference law of HVDC transmission line to a buried metal pipeline [D]. Chengdu: Southwest Petroleum University, 2014: 2
|
[7] |
(李丹丹. 高压直流输电线路对某埋地金属管道的干扰规律研究 [D]. 成都: 西南石油大学, 2014: 2)
|
[8] |
Cheng S S, Zhang L J, Yang A H. Influence of subway stray current corrosion on buried metal pipeline [J]. Gas Heat, 2003, 23: 435
|
[8] |
(程善胜, 张力君, 杨安辉. 地铁直流杂散电流对埋地金属管道的腐蚀 [J]. 煤气与热力, 2003, 23: 435)
|
[9] |
Gupta R K, Tan M Y J, Esquivel J, et al. Occurrence of anodic current and corrosion of steel in aqueous media under fluctuating cathodic protection potentials [J]. Corrosion, 2016, 72: 1243
|
[10] |
Liu Z Y, Li X G, Cheng Y F. Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pH solution [J]. Electrochim. Acta, 2011, 56: 4167
|
[11] |
Liu Z Y, Li X G, Cheng Y F. Understand the occurrence of pitting corrosion of pipeline carbon steel under cathodic polarization [J]. Electrochim. Acta, 2012, 60: 259
|
[12] |
Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51: 2863
|
[13] |
Dai M J, Liu J, Huang F, et al. Effect of cathodic protection potential fluctuations on pitting corrosion of X100 pipeline steel in acidic soil environment [J]. Corros. Sci., 2018, 143: 428
|
[14] |
Xie F, Wang D, Wu M, et al. Effect of environment factors on corrosion electrochemical behavior of X80 steel welded joint [J]. Heat Treat. Met., 2015, 40(10): 200
|
[14] |
(谢飞, 王丹, 吴明等. 环境因素对X80钢焊接接头腐蚀电化学行为的影响 [J]. 金属热处理, 2015, 40(10): 200)
|
[15] |
Zhang L, Du C W, Li X G. Effect of temperature, oxygen concentration and pH value on electrochemical behavior of X70 pipeline steel [J]. Heat Treat. Met., 2008, 33(11): 36
|
[15] |
(张亮, 杜翠薇, 李晓刚. 温度、pH值和氧浓度对X70管线钢电化学行为的影响 [J]. 金属热处理, 2008, 33(11): 36)
|
[16] |
Liu L X, Qiao Y X. Effect of pH value on electrochemical behavior of high nitrogen stainless steel in NaCl solution [J]. Corros. Sci. Prot. Technol., 2014, 26: 132
|
[16] |
(刘丽霞, 乔岩欣. pH值对高氮钢在NaCl溶液中腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2014, 26: 132)
|
[17] |
Xiao H Z, Xie F, Wu M, et al. Corrosion behavior of X80 pipeline steel under synergistic effect of CO32-, HCO3- and Cl- ions [J]. Mater. Prot., 2017, 50(8): 14
|
[17] |
(肖辉宗, 谢飞, 吴明等. X80管线钢在CO32-、HCO3-及Cl-协同作用下的腐蚀行为 [J]. 材料保护, 2017, 50(8): 14)
|
[18] |
Dai M J, Liu J, Huang F, et al. Derivation of the mechanistic relationship of pit initiation on pipelines resulting from cathodic protection potential fluctuations [J]. Corros. Sci., 2020, 163: 108226
doi: 10.1016/j.corsci.2019.108226
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|