Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 425-431    DOI: 10.11902/1005.4537.2019.267
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为
戴明杰1,2, 刘静1,2(), 黄峰1,2, 胡骞1,2, 李爽1
1 武汉科技大学 省部共建冶金与耐火国家重点实验室 武汉 430081
2 武汉科技大学 湖北省海洋工程材料及服役安全工程技术研究中心 武汉 430081
Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method
DAI Mingjie1,2, LIU Jing1,2(), HUANG Feng1,2, HU Qian1,2, LI Shuang1
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(7480 KB)   HTML
摘要: 

利用方波极化技术模拟阴极保护电位波动,通过正交试验方法研究不同电位波动参数,如电位波动频率 (f)、电位波动幅度 (E)、占空比 (δ)、电位总加载时间 (tt) 等,对酸性土壤环境中X100管线钢表面点蚀行为的影响程度大小。结果表明,电位波动参数对点蚀密度影响的顺序为:ttδfE。当f为0.5 Hz,E为-0.95~-0.7 V,δ为50%和tt为3 d时,宏观点蚀密度最大,即X100管线钢抗局部腐蚀性最差。同时,宏观点蚀密度随f增大而增大,随E升高而增大,在δ为50%时达到最大值,随tt的延长而增大。

关键词 正交试验阴极保护管线钢点蚀    
Abstract

The pitting behavior of X100 pipeline steel in an artificial solution, as a simulation of acidic soil environment was studied under fluctuated cathodic protection potentials with varying fluctuation parameters, such as potential fluctuation frequency (f), fluctuation amplitude (E), duty cycle (δ) and total loading time (tt). While the fluctuated cathodic protection potentials were simulated by means of square wave polarization (SWP) technology. The results show that the influence intensity of the potential fluctuation parameters can be ranked as follows: ttδfE. However, among others, when the test lasted for 3 d with the following potential fluctuation parameters, namely f=0.5 Hz, E=-0.95~-0.7 V and δ=50%, the X100 pipeline steel presented the worst resistance to localized corrosion. Furthermore, the pitting density would rise with the increase of f, E and tt, and reaches the maximum when δ is 50%.

Key wordsorthogonal test    cathodic protection    pipeline steel    pitting corrosion
收稿日期: 2019-12-18     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51871171);国家自然科学基金(51871172)
通讯作者: 刘静     E-mail: liujing@wust.edu.cn
Corresponding author: LIU Jing     E-mail: liujing@wust.edu.cn
作者简介: 戴明杰,男,1989年生,博士

引用本文:

戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
Mingjie DAI, Jing LIU, Feng HUANG, Qian HU, Shuang LI. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 425-431.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.267      或      https://www.jcscp.org/CN/Y2020/V40/I5/425

图1  方波极化电位模拟阴极保护电位波动的示意图
FactorLevel
123
A:potential fluctuation frequency (f / Hz)0.50.050.005
B:potential fluctuation range (E / V)-0.95~-0.9-0.95~-0.8-0.95~-0.7
C: duty cycle (δ / %)305070
D: total loading time (tt / d)123
表1  正交试验的因素水平表
图2  试验后界面宏观点蚀形貌图
Test numberFactorsPitting density mm-2
A (potential fluctuation frequency f ) / HzB (potential fluctuation range E) / VC (duty cycleδ) / %D (total loading time tt) / d
A1B1C1D10.5-0.95~-0.9301645.167
A1B2C2D20.5-0.95~-0.85022379.119
A1B3C3D30.5-0.95~-0.77034249.170
A2B1C2D30.05-0.95~-0.95034151.511
A2B2C3D10.05-0.95~-0.8701551.665
A2B3C1D20.05-0.95~-0.73021739.147
A3B1C3D20.005-0.95~-0.9702906.974
A3B2C1D30.005-0.95~-0.83033220.642
A3B3C2D10.005-0.95~-0.75011293.451
K17273.4565703.6535604.9562490.283---
K26442.3236151.4267824.0815025.240---
K35421.0677281.7685707.80911621.323---
Kˉ12424.4851901.2181868.319830.094---
Kˉ22147.4412050.4752608.0271675.080---
Kˉ31807.0222427.2561902.6033873.774---
Range (R)617.463526.038739.7083043.680---
Factor order3421---
Maximum pitting density combination0.5-0.95~-0.7503---
表2  试验点蚀统计结果及极差分析
图3  因素 (f,E,S和tt)-指标趋势图
图4  电位总加载时间为1 d时不同电位波动频率下宏观点蚀密度统计图
图5  电位波动半周期为1 s时不同电位总加载时间下宏观点蚀密度统计图
图6  上电位Eu上升时的宏观点蚀密度统计结果
图7  电化学体系的等效电路图
FactorDeviation sum of squareDegree of freedomF testF distributionSignificance?test
Af / Hz573898.98820.1363.110---
BE / V440958.30020.1053.110---
Cδ / %1045966.85420.2483.110---
Dtt / d14812245.49123.5113.110*
Error16873069.638---------
表3  正交试验方差分析
[1] Li X M, Rosas O, Castaneda H. Deterministic modeling of API5L X52 steel in a coal-tar-coating/cathodic-protection system in soil [J]. Int. J. Pres. Ves. Piping., 2016, 146: 161
[2] Xue Z Y, Bi W X, Chen Z H, et al. Situation and outlook for cathodic protection technology of oil & gas pipeline [J]. Oil Gas Storage Trans., 2014, 33: 938
[2] (薛致远, 毕武喜, 陈振华等. 油气管道阴极保护技术现状与展望 [J]. 油气储运, 2014, 33: 938)
[3] Gadala I M, Wahab M A, Alfantazi A. Numerical simulations of soil physicochemistry and aeration influences on the external corrosion and cathodic protection design of buried pipeline steels [J]. Mater. Des., 2016, 97: 287
[4] Fu A Q, Cheng Y F. Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution [J]. Corros. Sci., 2010, 52: 612
[5] Zhang Y X, Du Y X, Jiang Z T. Influence of alternating current interference on cathodic protection system of buried pipelines [J]. Corros. Prot., 2013, 34: 350
[5] (张玉星, 杜艳霞, 姜子涛. 交流干扰对埋地管线阴极保护的影响 [J]. 腐蚀与防护, 2013, 34: 350)
[6] Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
[7] Li D D. Study on the interference law of HVDC transmission line to a buried metal pipeline [D]. Chengdu: Southwest Petroleum University, 2014: 2
[7] (李丹丹. 高压直流输电线路对某埋地金属管道的干扰规律研究 [D]. 成都: 西南石油大学, 2014: 2)
[8] Cheng S S, Zhang L J, Yang A H. Influence of subway stray current corrosion on buried metal pipeline [J]. Gas Heat, 2003, 23: 435
[8] (程善胜, 张力君, 杨安辉. 地铁直流杂散电流对埋地金属管道的腐蚀 [J]. 煤气与热力, 2003, 23: 435)
[9] Gupta R K, Tan M Y J, Esquivel J, et al. Occurrence of anodic current and corrosion of steel in aqueous media under fluctuating cathodic protection potentials [J]. Corrosion, 2016, 72: 1243
[10] Liu Z Y, Li X G, Cheng Y F. Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pH solution [J]. Electrochim. Acta, 2011, 56: 4167
[11] Liu Z Y, Li X G, Cheng Y F. Understand the occurrence of pitting corrosion of pipeline carbon steel under cathodic polarization [J]. Electrochim. Acta, 2012, 60: 259
[12] Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51: 2863
[13] Dai M J, Liu J, Huang F, et al. Effect of cathodic protection potential fluctuations on pitting corrosion of X100 pipeline steel in acidic soil environment [J]. Corros. Sci., 2018, 143: 428
[14] Xie F, Wang D, Wu M, et al. Effect of environment factors on corrosion electrochemical behavior of X80 steel welded joint [J]. Heat Treat. Met., 2015, 40(10): 200
[14] (谢飞, 王丹, 吴明等. 环境因素对X80钢焊接接头腐蚀电化学行为的影响 [J]. 金属热处理, 2015, 40(10): 200)
[15] Zhang L, Du C W, Li X G. Effect of temperature, oxygen concentration and pH value on electrochemical behavior of X70 pipeline steel [J]. Heat Treat. Met., 2008, 33(11): 36
[15] (张亮, 杜翠薇, 李晓刚. 温度、pH值和氧浓度对X70管线钢电化学行为的影响 [J]. 金属热处理, 2008, 33(11): 36)
[16] Liu L X, Qiao Y X. Effect of pH value on electrochemical behavior of high nitrogen stainless steel in NaCl solution [J]. Corros. Sci. Prot. Technol., 2014, 26: 132
[16] (刘丽霞, 乔岩欣. pH值对高氮钢在NaCl溶液中腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2014, 26: 132)
[17] Xiao H Z, Xie F, Wu M, et al. Corrosion behavior of X80 pipeline steel under synergistic effect of CO32-, HCO3- and Cl- ions [J]. Mater. Prot., 2017, 50(8): 14
[17] (肖辉宗, 谢飞, 吴明等. X80管线钢在CO32-、HCO3-及Cl-协同作用下的腐蚀行为 [J]. 材料保护, 2017, 50(8): 14)
[18] Dai M J, Liu J, Huang F, et al. Derivation of the mechanistic relationship of pit initiation on pipelines resulting from cathodic protection potential fluctuations [J]. Corros. Sci., 2020, 163: 108226
doi: 10.1016/j.corsci.2019.108226
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[10] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[11] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[12] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[13] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[14] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[15] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.