Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 317-324    DOI: 10.11902/1005.4537.2019.248
  研究报告 本期目录 | 过刊浏览 |
L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究
李清1,2, 张德平1,2, 王薇3, 吴伟4(), 卢琳4, 艾池1()
1.东北石油大学石油工程学院 大庆 163318
2.中国石油吉林油田分公司二氧化碳开发公司 松原 138000
3.中国石油吉林油田分公司油气工程研究院 松原 138000
4.北京科技大学腐蚀与防护中心 北京 100083
Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab
LI Qing1,2, ZHANG Deping1,2, WANG Wei3, WU Wei4(), LU Lin4, AI Chi1()
1. School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China
2. Carbon Dioxide Development Company, Jilin Oilfield Branch of Petrochina, Songyua 138000, China
3. Research Institute of Oil&Gas Engineering, Jilin Oilfield Branch of Petrochina, Songyuan 138000, China
4. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(7952 KB)   HTML
摘要: 

重点关注了吉林油田中更换的L80油套管的腐蚀行为,通过SEM和体式显微镜对其表面形貌和腐蚀产物进行了分析,同时采用电化学测试和慢应变速率拉伸实验对模拟油井采出液环境中试样的电化学性能和应力腐蚀开裂风险进行了评估。结果表明,在吉林油田服役一段时间后,L80套管钢的外壁腐蚀比较轻微,主要以均匀腐蚀为主,仅有少量的腐蚀产物在表面附着;而L80套管的内壁腐蚀程度相对严重,有一层致密的腐蚀产物覆盖在基体表面,且在产物膜下出现了一定程度的局部腐蚀和点蚀坑,伴随着一些细小的微裂纹。室内研究表明,服役环境中的水分增加、CO2和H2S的产生均能加速其电化学过程,从而加速L80钢在油田采出液中的腐蚀。然而,这些因素对其应力腐蚀敏感性影响较小。L80钢在模拟油田采出水环境中具有较好的耐应力腐蚀开裂性能,说明其作为油井中的油套管材料具有较小的应力腐蚀开裂风险。

关键词 L80油套管CO2/H2S含水率应力腐蚀点蚀    
Abstract

The work aims to evaluate the risk of corrosion and stress corrosion cracking (SCC) of L80 tubing steel during long-term service in Jilin Oilfield. The surface morphology and corrosion products of L80 tubing steel replaced from Jilin Oilfield were analyzed by SEM and laser confocal microscope. Besides, the electrochemical means and slow strain rate tensile tests were used to evaluate the electrochemical behavior and SCC risk of L80 tubing steel in a simulated oil well production fluid. Results indicated that, after serving for several years, the degree of corrosion on the outer wall of L80 tubing steel was mild and dominated by uniform corrosion accompanied with few corrosion products. In the contrast, the inner wall of the L80 tubing steel was badly corroded with a scale of dense corrosion products, beneath which there existed certain localized corrosion, deep pits, as well as microcracks. The indoor tests indicated that the increase in water content, CO2 and H2S accelerated the electrochemical corrosion process, thereby promoting the corrosion in the oilfield produced water, while these factors affected little on the SCC sensitivity. In sum, L80 steel displayed good resistance to SCC in the simulated oilfield produced water environment, implying very low risk of SCC for L80 steel as casing materials for oil well.

Key wordsL80 tubing steel    CO2/H2S    water content    SCC    pitting corrosion
收稿日期: 2019-12-09     
ZTFLH:  TG172  
基金资助:国家重点研发计划(2018YFB0605502)
通讯作者: 吴伟,艾池     E-mail: wuwei19910117@126.com;aichi2001@163.com
Corresponding author: WU Wei,AI Chi     E-mail: wuwei19910117@126.com;aichi2001@163.com
作者简介: 李清,男,1983年生,硕士,高级工程师

引用本文:

李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
Qing LI, Deping ZHANG, Wei WANG, Wei WU, Lin LU, Chi AI. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 317-324.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.248      或      https://www.jcscp.org/CN/Y2020/V40/I4/317

图1  L80油管钢金相组织
图2  L80油管钢表面腐蚀产物形貌照片
图3  L80油管钢腐蚀产物EDS分析结果
图4  L80油管钢表面点蚀坑观察
图5  L80油管钢除锈后的腐蚀形貌观察
图6  L80钢在不同条件下的油田模拟液中的电化学阻抗谱
图7  不同条件下L80钢在模拟油田采出水环境中的极化曲线
图8  不同条件下L80钢在模拟油田采出水环境中的应力应变曲线
[1] Jia S Y. Review of CO2 corrosion and protection in oil and gas pipelines [J]. Clean. World, 2012, 28(12): 30
[1] (贾思洋. 油气管线的CO2腐蚀与防护综述 [J]. 清洗世界, 2012, 28(12): 30)
[2] Wang K, Zhang Y Q, Yin Z F, et al. Corrosion behavior of N80 and 3Cr tubing steels in CO2 flooding environment [J]. Corros. Prot., 2015, 36: 706
[2] (王珂, 张永强, 尹志福等. N80和3Cr油管钢在CO2驱油环境中的腐蚀行为 [J]. 腐蚀与防护, 2015, 36: 706)
[3] Jia H Z, Sun G D, Yin F S, et al. Effects of long term aging on microstructure and properties of heat insulation oil pipe steel [J]. Trans. Mater. Heat Treat., 2015, 36(6): 149
[3] (贾贺泽, 孙国栋, 殷凤仕等. 长期时效对一种隔热油管钢组织和性能的影响 [J]. 材料热处理学报, 2015, 36(6): 149)
[4] Honarvar N M, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel [J]. Mater. Des. 2010, 31: 3559
doi: 10.1016/j.matdes.2010.01.038
[5] Gao C L, Liu M L, Li D P, et al. Effects of CO2 partial pressure on CO2 corrosion behavior of N80 tubular steel [J]. Corros. Prot., 2014, 35: 975
[5] (高纯良, 刘明亮, 李大朋等. CO2分压对N80油管钢CO2腐蚀行为的影响 [J]. 腐蚀与防护, 2014, 35: 975)
[6] Yao X F, Xie F Q, Wang Y F. Effects of pH values on corrosive films characteristics and corrosive behaviors of super 13Cr tubing steels in NaCl solution [J]. J. Mater. Eng., 2014, (3): 83
[6] (姚小飞, 谢发勤, 王毅飞. pH值对超级13Cr钢在NaCl溶液中腐蚀行为与腐蚀膜特性的影响 [J]. 材料工程, 2014, (3): 83)
[7] Liu R K, Zhang D P, Hao W K, et al. Effect of H2S partial pressure on stress corrosion cracking behavior of N80 oil casing steel in the environment of CO2 [J]. J Sichuan Univ. (Eng. Sci. Ed.), 2013, 45(6): 196
[7] (刘然克, 张德平, 郝文魁等. H2S分压对N80油套管钢CO2环境下应力腐蚀开裂的影响 [J]. 四川大学学报 (工程科学版), 2013, 45(6): 196)
[8] Malik J I, Mirza N M, Mirza S M. Simulation of corrosion product activity in extended operating cycles of PWRs under flow rate transient and nonlinearly rising corrosion rates coupled with pH effects [J]. Nucl. Eng. Des., 2012, 249: 388
doi: 10.1016/j.nucengdes.2012.04.013
[9] Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
doi: 10.1016/j.electacta.2012.01.025
[10] Zhao Y F, Song M D. Failure analysis of a natural gas pipeline [J]. Eng. Fail. Anal., 2016, 63: 61
doi: 10.1016/j.engfailanal.2016.02.023
[11] Qiao Q, Cheng G X, Wu W, et al. Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors [J]. Eng. Fail. Anal., 2016, 64: 126
doi: 10.1016/j.engfailanal.2016.02.015
[12] Guo Y H, Zhou X H, Ling Y X, et al. New understandings of hydrocarbon accumulation in Penglai 19-3 oilfield, the Bohai waters [J]. Oil Gas Geol., 2011, 32: 327
doi: 10.11743/ogg20110303
[12] (郭永华, 周心怀, 凌艳玺等. 渤海海域蓬莱19-3油田油气成藏特征新认识 [J]. 石油与天然气地质, 2011, 32: 327)
doi: 10.11743/ogg20110303
[13] Javidi M, Bahalaou Horeh S. Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel [J]. Corros. Sci., 2014, 80: 213
doi: 10.1016/j.corsci.2013.11.031
[14] Hao W K, Liu Z Y, Du C W, et al. Stress corrosion cracking behavior of 16 Mn steel and heat-affected zone in alkaline sulfide with different concentrations [J]. CIESC J., 2013, 64: 4143
[14] (郝文魁, 刘智勇, 杜翠薇等. 不同硫化物浓度碱性溶液中16Mn钢及热影响区应力腐蚀行为 [J]. 化工学报, 2013, 64: 4143)
doi: 10.3969/j.issn.0438-1157.2013.11.035
[15] Chen X, Li X G, Du C W, et al. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating [J]. Corros. Sci., 2009, 51: 2242
doi: 10.1016/j.corsci.2009.05.027
[16] Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
[17] Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
doi: 10.1016/j.corsci.2010.07.013
[18] Ji Y S, Zhan G M, Tan Z C, et al. Process control of reinforcement corrosion in concrete. Part 1: Effect of corrosion products [J]. Constr. Build. Mater., 2015, 79: 214
doi: 10.1016/j.conbuildmat.2014.12.083
[19] Wu W, Hao W K, Liu Z Y, et al. Corrosion behavior of E690 high-strength steel in alternating wet-dry marine environment with different pH values [J]. J. Mater. Eng. Perform., 2015, 24: 4636
doi: 10.1007/s11665-015-1781-x
[20] Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment [J]. Corros. Sci., 2008, 50: 2251
doi: 10.1016/j.corsci.2008.05.011
[21] Liang P, Li X G, Du C W, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution [J]. Mater. Des., 2009, 30: 1712
doi: 10.1016/j.matdes.2008.07.012
[22] Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrogen Energy, 2009, 34: 9879
doi: 10.1016/j.ijhydene.2009.09.090
[23] Liu Z Y, Li X G, Du C W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment [J]. Corros. Sci., 2009, 51: 895
doi: 10.1016/j.corsci.2009.01.007
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[7] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[9] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[10] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[11] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[12] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[13] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[14] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[15] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.