|
|
混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究 |
任继栋,高荣杰( ),张宇,刘勇,丁甜 |
中国海洋大学材料科学与工程研究院 青岛 266100 |
|
Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties |
Jidong REN,Rongjie GAO( ),Yu ZHANG,Yong LIU,Tian DING |
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
引用本文:
任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
Jidong REN,
Rongjie GAO,
Yu ZHANG,
Yong LIU,
Tian DING.
Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 233-240.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2016.017
或
https://www.jcscp.org/CN/Y2017/V37/I3/233
|
[1] | Liu K S, Tian Y, Jiang L.Bio-inspired superoleophobic and smart materials: Design, fabrication, and application[J]. Prog. Mater. Sci., 2013, 58: 503 | [2] | Barthwal S, Lim S H.Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness[J]. Appl. Surf. Sci., 2015, 328: 296 | [3] | Genzer J, Efimenko K.Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science, 2000, 290: 2130 | [4] | Yoshimitsu Z, Nakajima A, Watanabe T, et al.Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18: 5818 | [5] | Singh S, Houston J, van Swol F V, Brinker C J. Superhydrophobicity: Drying transition of confined water[J]. Nature, 2006, 442: 526 | [6] | Gao X F, Yao X, Jiang L.Effects of rugged nanoprotrusions on the surface hydrophobicity and water adhesion of anisotropic micropatterns[J]. Langmuir, 2007, 23: 4886 | [7] | Deng X, Mammen L, Butt H J, et al.Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335: 67 | [8] | Tuteja A, Choi W, Ma M L, et al.Designing superoleophobic surfaces[J]. Science, 2007, 318: 1618 | [9] | Blossey R.Self-cleaning surfaces—virtual realities[J]. Nat. Mater., 2003, 2: 301 | [10] | Xiu Y H, Zhu L B, Hess D W, et al.Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity[J]. Nano Lett., 2007, 7: 3388 | [11] | Yuan Z Q, Xiao J Y, Wang C Q, et al.Preparation of a superamphiphobic surface on a common cast iron substrate[J]. J. Coat. Technol. Res., 2011, 8: 773 | [12] | Li J, Liu X H, Ye Y P, et al.Fabrication of superhydrophobic CuO surfaces with tunable water adhesion[J]. J. Phys. Chem., 2011, 115C: 4726 | [13] | Qiu R, Zhang D, Wang P.Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition[J]. Corros. Sci., 2013, 66: 350 | [14] | Liu C S, Su F H, Liang J Z.Facile fabrication of a robust and corrosion resistant superhydrophobic aluminum alloy surface by a novel method[J]. RSC Adv., 2014, 4: 55556 | [15] | Badre C, Pauporté T, Turmine M, et al.Tailoring the wetting behavior of zinc oxide films by using alkylsilane self-assembled monolayers[J]. Superlattices Microstruct., 2007, 42: 99 | [16] | Sun T L, Feng L, Gao X F, et al.Bioinspired surfaces with special wettability[J]. Accounts Chem. Res., 2005, 38: 644 | [17] | Chen X H, Kong L H, Dong D, et al.Fabrication of functionalized copper compound hierarchical structure with bionic superhydrophobic properties[J]. J. Phys. Chem., 2009, 113C: 5396 | [18] | Nosonovsky M.Multiscale roughness and stability of superhydrophobic biomimetic interfaces[J]. Langmuir, 2007, 23: 3157 | [19] | Jin C D, Li J P, Han S J, et al.A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface[J]. Appl. Surf. Sci., 2014, 320: 322 | [20] | Nishino T, Meguro M, Nakamae K, et al.The lowest surface free energy based on-CF3 alignment[J]. Langmuir, 1999, 15: 4321 | [21] | Wu X D, Zheng L J, Wu D.Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route[J]. Langmuir, 2005, 21: 2665 | [22] | Tian H, Yang T S, Chen Y Q.Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid[J]. Appl. Surf. Sci., 2009, 255: 4289 | [23] | Li H J, Wang X B, Song Y L, et al.Super-“amphiphobic” aligned carbon nanotube films[J]. Angew. Chem.-Int. Edit., 2001, 40: 1743 | [24] | Nicolas M, Guittard F, Géribaldi S.Synthesis of stable super water- and oil-repellent polythiophene films[J]. Angew. Chem.-Int. Edit., 2006, 45: 2251 | [25] | Feng L, Li S H, Li Y S, et al.Super-hydrophobic surfaces: From natural to artificial[J]. Adv. Mater., 2002, 14: 1857 | [26] | Zhu X T, Zhang Z Z, Xu X H, et al.Facile fabrication of a superamphiphobic surface on the copper substrate[J]. J. Colloid Interface Sci., 2012, 367: 443 | [27] | Li H, Rong S R, Liu E Y, et al.Fabrication and characterization of bionic amphiphobic functional surface on X70 pipeline steel[J]. Microsyst. Technol., 2015, 21: 2003 | [28] | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546 | [29] | Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988 | [30] | Gao L C, McCarthy T J. Ionic liquids are useful contact angle probe fluids[J]. J. Am. Chem. Soc., 2007, 129: 3804 | [31] | Xie Q, Xu J, Feng L, et al.Facile creation of a super-amphiphobic coating surface with bionic microstructure[J]. Adv. Mater., 2004, 16: 302 | [32] | Wang P, Zhang D, Qiu R, et al.Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere[J]. Corros. Sci., 2013, 69: 23 | [33] | Song J L, Xu W J, Lu Y, et al.Fabrication of superhydrophobic surfaces on Mg alloy substrates via primary cell corrosion and fluoroalkylsilane modification[J]. Mater. Corros., 2013, 64: 979 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|