Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 215-222    DOI: 10.11902/1005.4537.2019.053
  综合评述 本期目录 | 过刊浏览 |
交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展
梁毅, 杜艳霞()
北京科技大学 新材料技术研究院 北京 100083
Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference
LIANG Yi, DU Yanxia()
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(2409 KB)   HTML
摘要: 

大量交流腐蚀案例显示传统的阴极保护有效性判据在交流干扰存在时出现失效,尤其在高阴极保护水平下交流腐蚀加剧,如何评判交流干扰和阴极保护协同作用下的交流腐蚀风险,选择合适的阴极保护参数已成为实际生产的迫切需求和研究热点。本文分析了近年来国际上交流干扰评判标准的最新发展,总结了相关文献中对交流干扰及阴极保护参数的要求,并系统地阐述了高阴极保护条件下管道交流腐蚀机理的最新研究成果,分析了目前的交流腐蚀模型存在的主要问题,展望了该领域的发展趋势。

关键词 阴极保护交流干扰腐蚀评判准则交流腐蚀机理    
Abstract

Corrosion survey on alternative current (AC) interference associated corrosion cases showed that the traditional criteria for cathodic protection (CP) is not applicable in the presence of AC interference. It is known about that in the presence of AC interference, the corrosion rate of buried pipeline even under CP of high quality is not negligible. Therefore, it was urgent to know how to evaluate the corrosion risk for the cathodically protected buried-pipelines in the presence of AC interference and how to choose the applicable CP parameter to protect pipelines. Base on that, the present criteria related with AC corrosion were analyzed and several corrosion theories have been proposed about the mechanism by which AC induces and enhances the corrosion of carbon steel in CP condition. After summarizing the AC corrosion mechanisms, the key problems are indicated and the development trend of this research field is predicted.

Key wordscathodic protection    AC interference    corrosion criteria    AC corrosion mechanism
收稿日期: 2019-04-30     
ZTFLH:  TG172  
通讯作者: 杜艳霞     E-mail: duyanxia@ustb.edu.cn
Corresponding author: DU Yanxia     E-mail: duyanxia@ustb.edu.cn
作者简介: 梁毅,女,1991年生,博士生

引用本文:

梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
Yi LIANG, Yanxia DU. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 215-222.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.053      或      https://www.jcscp.org/CN/Y2020/V40/I3/215

图1  涂层缺陷附近阴极保护产生的OH-的物质平衡图[35]
图2  Pourbaix图中与交流腐蚀相关的腐蚀区域[35]
图3  阴极保护电流密度与扩散电阻关系图[37]
图4  阴极保护下埋地金属管道交流腐蚀的自催化系统[30]
图5  阴极保护管道/土壤界面上的pH值和电位波动区域[38]
图6  不同pH值下,Fe在硫酸钠溶液中的循环伏安曲线[38]
图7  交流腐蚀机理[40]
[1] Gao P, Tan Z, Liu G R, et al. China's oil and gas pipeline construction in 2016 [J]. Int. Petrol. Econom., 2017, 25(3): 26
[1] (高鹏, 谭喆, 刘广仁等. 2016年中国油气管道建设新进展 [J]. 国际石油经济, 2017, 25(3): 26)
[2] Zhu Q Z, Wu C, Li Q Y, et al. Development status and trend of global oil and gas pipelines [J]. Oil Gas Storage Transport., 2017, 36: 375
[2] (祝悫智, 吴超, 李秋扬等. 全球油气管道发展现状及未来趋势 [J]. 油气储运, 2017, 36: 375)
[3] Nielsen L V, Baumgarten B, Cohn P, et al. A field study of line currents and corrosion rate measurements in a pipeline critically interfered with AC and DC stray currents [A]. The 9th CEOCOR Annual Conference [C]. Belgium, 2006
[4] Reyes T, Bhola S M, Olson D L, et al. Study of corrosion of super martensitic stainless steel under alternating current in artificial sea water [A]. The 66th NACE Annual Conference [C]. Houston, 2011: 2328
[5] Lilleby L S, Olsen S, Hesjevik S M. Effects from alternating current on cathodic protection of submarine pipelines [A]. The 66th NACE Annual Conference [C]. Houston, 2011: 11055
[6] Wakelin R G, Gummow R A, Segall S M. AC corrosion-case histories, test procedures, & mitigation [A]. The 53th NACE Annual Conference [C]. San Diego, 1998: 00565
[7] Wakelin R G, Sheldon C. Investigation and mitigation of AC corrosion on a 300 mm diameter natural gas pipeline [A]. The 59th NACE Annual Conference [C]. New Orleans, 2004: 04205
[8] Floyd R. Testing and mitigation of AC corrosion on 8 line: A field study [A]. The 59th NACE Annual Conference [C]. New Orleans, Louisiana, 2004: 04210
[9] Linhardt P, Ball G. AC corrosion: results from laboratory investigations and from a failure analysis [A]. The 61th NACE Annual Conference [C]. Houston, 2006
[10] Junker A, Heinrich C, Nielsen L V, et al. Laboratory and field investigation of the effect of the chemical environment on AC corrosion [A]. The 73th NACE Annual Conference [C]. Phoenix, 2019: 10844
[11] Ormellese M, Brenna A, Lazzari L. AC corrosion of cathodically protected buried pipelines: critical interference values and protection criteria [A]. The 70th NACE Annual Conference [C]. Dallas, Texas, 2015: 05753
[12] Du Y X, Tang D Z, Lu M X, et al. Researches on the effects of AC interference on CP parameters and AC corrosion risk assessment for cathodic protected carbon steel [A]. The 73th NACE Annual Conference [C]. New Orleans, 2018: 08962
[13] Hosokawa Y, Kajiyama F, Nakamura Y. New CP criteria for elimination of the risks of AC corrosion and overprotection on cathodically protected pipelines [A]. The 57th NACE Annual Conference [C]. Denver, 2002: 02111
[14] Hosokawa Y, Kajiyama F, Nakamura Y. New cathodic protection criteria based on direct and alternating current densities measured using coupons and their application to modern steel pipelines [J]. Corrosion, 2004, 60: 304
doi: 10.5006/1.3287735
[15] Büchler M, Schöneich H G, Stalder F. Discussion of criteria to assess the alternating current corrosion risk of cathodically protected pipelines [A]. The 7th CEOCOR Annual Conference [C]. Slovakia, 2004
[16] Du C Y, Cao B, Wu Y S. Applicability of -850 mV (CSE) cathodic protection potential criterion under AC interference condition [J]. Corros. Prot., 2009, 30: 655
[16] (杜晨阳, 曹备, 吴荫顺. 交流电干扰下-850 mV (CSE) 阴极保护电位准则的适用性研究 [J]. 腐蚀与防护, 2009, 30: 655)
[17] Ormellese M, Lazzari L, Goidanich S, et al. CP criteria assessment in the presence of AC interference [A]. The 63th NACE Annual Conference [C]. New Orleans, 2008: 08064
[18] Ormellese M, Lazzari L, Brenna A, et al. Proposal of CP criterion in the presence of AC-interference [A]. The 65th NACE Annual Conference [C]. San Antonio, 2010: 10032
[19] Fu A Q, Cheng Y F. Effect of alternating current on corrosion and effectiveness of cathodic protection of pipelines [J]. Can. Metall. Quart., 2012, 51: 81
[20] Lindemuth D, Crabtree D. AC Corrosion Control: When Too Much Cathodic Protection Might Just be a Bad Thing! [C]. The 73th NACE Annual Conference [C]. New Orleans, 2018: 11271
[21] CEN/TS 15280-2006 Evaluation of A.C. corrosion likelihood of buried pipelines—Application to cathodically protected pipelines [S]. 2006
[22] Tang D Z, Du Y X, Lu M X, et al. Study on CP criteria for mild steel in the presence of AC interference [A]. The 69th NACE Annual Conference [C]. San Antonio, 2014: 03802
[23] Du Y X, Xie S L, Xiao Y W, et al. Research on the effects of environmental parameters on AC corrosion behavior [A]. The 73th NACE Annual Conference [C]. Phoenix, 2018: 10676
[24] CEN/TS 15280-2013 Evaluation of A.C. corrosion likelihood of buried pipelines applicable to cathodically protected pipelines [S]. 2013
[25] ISO 18086-2015 Corrosion of metals and alloys — Determination of AC corrosion—Protection criteria [S]. 2015
[26] Kouloumbi N, Batis G, Kioupis N, et al. Study of the effect of AC-interference on the cathodic protection of a gas pipeline [J]. Anti-Corros. Methods Mater., 2002, 49: 335
doi: 10.1108/00035590210440728
[27] Tang D Z, Du Y X, Lu M X, et al. Effect of AC current on corrosion behavior of cathodically protected Q235 steel [J]. Mater. Corros., 2015, 66: 278
[28] Qian S, Cheng Y F. Accelerated corrosion of pipeline steel and reduced cathodic protection effectiveness under direct current interference [J]. Constr. Build. Mater., 2017, 148: 675
doi: 10.1016/j.conbuildmat.2017.05.024
[29] Babaghayou F, Zegnini B, Seghier T. Effect of alternating current interference corrosion on neighbouring pipelines [J]. Electroteh., Electron., Automat., 2017, 65(4): 108
[30] NACE SP21424-2018 Alternating current corrosion on cathodically protected pipelines: Risk assessment, mitigation, and monitoring [S].
[31] Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB/T 50698-2011 Standard for AC interference mitigation of buried steel pipelines [S]. Beijing: China Planning Press, 2012
[31] (中华人民共和国住房和城乡建设部. GB/T 50698-2011 埋地钢质管道交流干扰防护技术标准 [S]. 北京: 中国计划出版社, 2012)
[32] Nielsen L V. Role of alkalization in AC Induced corrosion of pipelines and consequences hereof in relation to CP requirements [A]. The 60th NACE Annual Conference [C]. Houston, 2005: 05188
[33] Nielsen L V, Nielsen K V, Baumgarten B, et al. AC induced corrosion in pipelines: Detection, characterization and mitigation [A]. The 59th NACE Annual Conference [C]. New Orleans, 2004: 04211
[34] Nielsen L V, Cohn P. AC corrosion in pipelines: Field experiences from a highly corrosive test site using ER corrosivity probes [A]. The 6th CEOCOR Annual Conference [C]. Slovakia, 2003
[35] Nielsen L V, Baumgarten B, Cohn P. On-site measurements of AC induced corrosion: effect of AC and DC parameters [A]. The 7th CEOCOR Annual Conference [C]. Slovakia, 2004
[36] Nielsen L V, Baumgarten B, Cohn P. Investigating AC and DC stray current corrosion [A]. The 7th CEOCOR Annual Conference [C]. Slovakia, 2004
[37] Nielsen L V. Considerations on measurements and measurement techniques under ac interference conditions [A]. The 14th CEOCOR Annual Conference [C]. Brussels, 2011
[38] Panossian Z, Filho S E, de Almeida N L, et al. Effect of alternating current by high power lines voltage and electric transmission systems in pipelines corrosion [A]. The 64th NACE Annual Conference [C]. Atlanta, Georgia, 2009: 09541
[39] Büchler M, Schöneich H G. Investigation of alternating current corrosion of cathodically protected pipelines: Development of a detection method, mitigation measures, and a model for the mechanism [J]. Corrosion, 2009, 65: 578
doi: 10.5006/1.3319160
[40] Büchler M. Alternating current corrosion of cathodically protected pipelines: Discussion of the involved processes and their consequences on the critical interference values [J]. Mater. Corros., 2012, 63: 1181
[41] Büchler M. The ac corrosion rate: A discussion of the influencing factors and the consequences on the durability of cathodically protected pipelines [A]. EUROCORR [C]. Pisa, 2014
[42] Wang H R, Du C W, Liu Z Y, et al. Effect of alternating current on the cathodic protection and interface structure of X80 steel [J]. Materials, 2017, 10: 851
doi: 10.3390/ma10080851
[43] Brenna A, Ormellese M, Lazzari L. A proposal of AC corrosion mechanism of carbon steel in cathodic protection condition [A]. The 68th NACE Annual Conference [C]. Orlando, 2013: 02457
[44] Brenna A, Ormellese M, Lazzari L. Electromechanical breakdown mechanism of passive film in alternating current-related corrosion of carbon steel under cathodic protection condition [J]. Corrosion, 2016, 72: 1055
[45] Vetter K J, Strehblow H H S. Origin and form of corrosion pitting holes in the iron and theoretical implications for pitting corrosion [J]. J. Pharma. Sci. Math., 1970, 74: 1024
[46] Sato N. A theory for breakdown of anodic oxide films on metals [J]. Electrochim. Acta, 1971, 16: 1683
doi: 10.1016/0013-4686(71)85079-X
[47] Strehblow H H, Marcus P. Mechanisms of pitting corrosion [A]. Corrosion Mechanisms in Theory and Practice [M]. New York: Marcel Dekker, 2002: 243
[48] Zhu M, Du C W. A new understanding on AC corrosion of pipeline steel in alkaline environment [J]. J. Mater. Eng. Perform., 2017, 26: 221
doi: 10.1007/s11665-016-2416-6
[1] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[3] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[4] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[5] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[7] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[8] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[9] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[10] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[11] 李伟,杜艳霞,姜子涛,路民旭. 电气化铁路对埋地管道交流干扰的研究进展[J]. 中国腐蚀与防护学报, 2016, 36(5): 381-388.
[12] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[13] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[14] 许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[15] 范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.