Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 478-486    DOI: 10.11902/1005.4537.2017.184
  研究报告 本期目录 | 过刊浏览 |
铜基非晶合金复合材料在NaCl溶液中的腐蚀行为研究
张志英(), 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏
武汉理工大学材料科学与工程学院 武汉 430070
Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution
Zhiying ZHANG(), Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
全文: PDF(5587 KB)   HTML
摘要: 

通过差示扫描量热法,设定升温速率为10 K/min,确定了铜基块体非晶合金Cu47.5Zr47.5-xAl5Hfx(x=0,9.5) 的玻璃转变温度Tg为712~722 K,晶化温度Tx为747~766 K。结果表明,通过退火处理可获得铜基非晶合金或非晶-纳米晶复合材料。退火温度和退火时间影响组织结构和显微硬度。当退火温度高于Tg时,随着退火温度的升高以及退火时间的延长,显微硬度和结晶度逐渐增加然后趋于平缓。通过浸泡法和动电位极化法研究了铸态试样以及不同条件下退火后试样在3.5% (质量分数) NaCl溶液中的腐蚀行为。结果表明,Cu47.5Zr47.5-xAl5Hfx(x=0,9.5) 试样在3.5%NaCl溶液中发生点蚀。与铸态试样相比,在623 K (即低于Tg) 或773 K (即略高于Tx) 退火30 min试样的自腐蚀电位升高,腐蚀电流密度略微增加,耐蚀性变化不大。在923 K (即远高于Tx) 退火30 min 后试样的自腐蚀电位显著降低,腐蚀电流密度变化不大,耐腐蚀性变差。Hf含量对耐腐蚀性的影响较小。

关键词 非晶合金复合材料退火腐蚀动电位极化X射线衍射显微硬度    
Abstract

Using differential scanning calorimetry (DSC) with heating rate of 10 K/min, the glass transition temperature Tg and the crystallization temperature Tx of the Cu-based bulk metallic glasses (BMGs) Cu47.5Zr47.5-xAl5Hfx (x=0, 9.5) were determined to be 712~722 K and 747~766 K, respectively. X-ray diffraction (XRD) analysis confirmed that Cu-based metallic glass or metallic glass-nanocrystalline composites could be obtained throu-gh annealing. The microstructure and microhardness were affected by the annealing temperature and time. When the annealing temperature was above Tg, with the increase of annealing temperature and time, the crystallinity and the microhardness gradually increased and then leveled off. Immersion tests and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of the as-cast and annealed samples in 3.5%NaCl solution. Pitting was observed on the Cu47.5Zr47.5-xAl5Hfx (x=0, 9.5) samples after immersion in 3.5%NaCl solution. Compared with the as-cast samples, the samples anneal-ed at 623 K (i.e. below Tg) or at 773 K (i.e. slightly above Tx) exhibited higher corrosion potential and slightly larger corrosion current density, indicating the similar corrosion resistance of them. The samples annealed at 923 K (i.e. much higher than Tx) for 30 min exhibited much lower corrosion potential and similar corrosion current density, indicating their poorer corrosion resistance. Hf content showed minor effect on the corrosion resistance.

Key wordsbulk metallic glass composite    anneal    corrosion    potentiodynamic polarization    XRD    microhardness
收稿日期: 2017-11-09     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金 (51502229),武汉理工大学博士科研启动基金(471-40120189) 和武汉理工大学自主创新研究基金 (2017-CL-B1-08)
作者简介:

作者简介 张志英,女,1977年生,博士,教授

引用本文:

张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏. 铜基非晶合金复合材料在NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 478-486.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.184      或      https://www.jcscp.org/CN/Y2018/V38/I5/478

图1  Cu47.5Zr47.5-xAl5Hfx(x=0,9.5) 试样的DSC曲线 (升温速率为10 K/min)
Cu47.5Zr47.5-xAl5Hfx Tg / K Tx / K
x=0 712 747
x=9.5 722 766
表1  通过DSC确定的Cu47.5Zr47.5-xAl5Hfx(x=0,9.5) 的Tg和Tx (升温速率为10 K/min)
图2  Cu47.5Zr47.5-xAl5Hfx(x=9.5) 未退火试样以及在923 K退火8~30 min试样的XRD谱
图3  Cu47.5Zr47.5-xAl5Hfx(x=0) 未退火试样以及在不同温度 (623~923 K) 下退火30 min试样的XRD谱
图4  Cu47.5Zr47.5-xAl5Hfx(x=9.5) 未退火试样以及在不同温度 (623~923 K) 下退火30 min试样的XRD谱
图5  Cu47.5Zr47.5-xAl5Hfx(x=9.5) 试样在923 K退火不同时间后的显微硬度
图6  Cu47.5Zr47.5-xAl5Hfx(x=0, 9.5) 试样在不同温度退火30 min后的显微硬度
图7  铸态Cu47.5Zr47.5-xAl5Hfx(x=0, 9.5) 试样浸泡前的光学显微像
图8  铸态Cu47.5Zr47.5-xAl5Hfx(x=0) 试样浸入3.5%NaCl溶液72 h后光学显微像
图9  铸态Cu47.5Zr47.5-xAl5Hfx(x=9.5) 试样浸入3.5%NaCl溶液72 h后的光学显微像
图10  铸态Cu47.5Zr47.5-xAl5Hfx(x=0) 试样浸入3.5%NaCl溶液120 h后的SEM像
图11  铸态Cu47.5Zr47.5-xAl5Hfx(x=9.5) 试样浸入3.5%NaCl溶液120 h后的SEM像
图12  Cu47.5Zr47.5-xAl5Hfx(x=0) 铸态试样和923 K退火处理后试样在3.5%NaCl溶液中的动电位极化曲线
图13  Cu47.5Zr47.5-xAl5Hfx(x=9.5) 铸态试样和623~923 K退火处理后试样在3.5%NaCl溶液中的动电位极化曲线
图14  Cu47.5Zr47.5-xAl5Hfx(x=0, 9.5) 铸态试样和923 K退火处理后试样在3.5%NaCl溶液中的动电位极化曲线
Site Al Cu Zr Cl O
No.1 0.55 59.50 12.23 --- Bal.
No.2 1.51 48.79 18.09 0.65 Bal.
No.3 1.99 15.60 15.67 3.75 Bal.
No.4 1.84 21.68 14.08 0.98 Bal.
No.5 3.12 47.07 13.99 1.58 Bal.
No.6 3.79 31.54 32.54 --- Bal.
No.7 2.62 22.26 18.48 5.22 Bal.
No.8 1.99 13.43 14.41 5.28 Bal.
表2  Cu47.5Zr47.5-xAl5Hfx(x=0) 试样浸入3.5%NaCl溶液120 h后的EDS结果
Site Al Cu Zr Hf Cl O
No.1 10.22 24.50 20.24 4.79 --- Bal.
No.2 1.27 17.14 15.64 3.43 0.96 Bal.
No.3 1.87 11.86 10.58 2.19 3.42 Bal.
No.4 1.80 12.30 16.47 3.53 4.00 Bal.
No.5 1.13 29.29 11.57 2.73 0.56 Bal.
No.6 4.70 33.38 28.27 6.90 --- Bal.
No.7 2.29 14.08 15.39 3.67 0.55 Bal.
No.8 2.52 13.09 12.77 2.90 0.70 Bal.
No.9 2.41 19.96 15.82 3.89 1.43 Bal.
表3  Cu47.5Zr47.5-xAl5Hfx(x=9.5) 试样浸入3.5%NaCl溶液120 h后的EDS结果
Cu47.5Zr47.5-xAl5Hfx Annealing temperature / K EcorrV (vs SCE) IcorrAcm-2
x=0 293 0.104 5.169×10-5
923 -0.279 5.125×10-5
x=9.5 293 0.169 2.327×10-5
623 0.240 2.590×10-4
773 0.195 8.792×10-5
923 -0.262 7.435×10-5
表4  Cu47.5Zr47.5-xAl5Hfx(x=0, 9.5) 铸态试样以及经不同温度退火处理后试样在3.5%NaCl溶液中动电位极化测得的自腐蚀电位Ecorr和腐蚀电流密度Icorr
[1] Wang W H.The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Prog. Mater. Sci., 2012, 57: 487
[2] Greer A L, Cheng Y Q, Ma E.Shear bands in metallic glasses[J]. Mater. Sci. Eng., 2013, R74: 71
[3] Wang J Q.Chemical functional applications and fundamental researches of metallic glasses[J]. Mater. China, 2014, 33: 270(王军强. 金属玻璃的功能性应用及相关基础研究[J]. 中国材料进展, 2014, 33: 270)
[4] Li H F, Zheng Y F.Recent advances in bulk metallic glasses for biomedical applications[J]. Acta Biomater., 2016, 36: 1
[5] Kim D H, Kim W T, Park E S, et al.Phase separation in metallic glasses[J]. Prog. Mater. Sci., 2013, 58: 1103
[6] Qiao J W, Jia H L, Liaw P K.Metallic glass matrix composites[J]. Mater. Sci. Eng., 2016, R100: 1
[7] Chen S S, Zhang H R,Todd I.Phase-separation-enhanced plasticity in a Cu47.2Zr46.5Al5.5Nb0.8 bulk metallic glass[J]. Scr. Mater., 2014, 72/73: 47
[8] Wei R, Yang S, Chang Y, et al.Mechanical property degradation of a CuZr-based bulk metallic glass composite induced by sub-Tg annealing[J]. Mater. Des., 2014, 56: 128
[9] Wu J L, Li W H, Pan Y, et al.Microalloying and microstructures of Cu-based bulk metallic glasses & composites and relevant mechanical properties[J]. Mater. Des., 2016, 89: 1130
[10] Vincent S, Daiwile A, Devi S S, et al.Bio-corrosion and cytotoxicity studies on novel Zr55Co30Ti15 and Cu60Zr20Ti20 metallic glasses[J]. Metall. Mater. Trans., 2015, 46A: 2422
[11] Lin H M, Wu J K, Wang C C, et al.The corrosion behavior of mechanically alloyed Cu-Zr-Ti bulk metallic glasses[J]. Mater. Lett., 2008, 62: 2995
[12] Lee P Y, Cheng Y M, Chen J Y, et al.Formation and corrosion behavior of mechanically-alloyed Cu-Zr-Ti bulk Metallic glasses[J]. Metals, 2017, 7: 148
[13] Cai A H, Xiong X, Liu Y, et al.Corrosion behavior of Cu55Zr35Ti10 metallic glass in the chloride media[J]. Mater. Chem. Phys., 2012, 134: 938
[14] Cai A H, Ding D W, Xiong X, et al.Effect of mechanical tension on corrosive and thermal properties of Cu50Zr40Ti10 metallic glass[J]. Mater. Sci. Eng., 2013, A588: 49
[15] Baca N, Conner R D, Garrett S J.Corrosion behavior of oxide-covered Cu47Ti34Zr11Ni8 (Vitreloy 101) in chloride-containing solutions[J]. Mater. Sci. Eng., 2014, B184: 105
[16] Wu J L, Li X Z, Cao H B, et al.Ultraviolet light irradiation on pitting corrosion of Cu-based bulk metallic glasses[J]. J. Alloys Compd., 2016, 661: 345
[17] Liu B, Liu L, Sun M, et al.Influence of Cr micro-addition on the glass forming ability and corrosion resistance of Cu-based bulk metallic glasses[J]. Acta Metall. Sin., 2005, 41: 738(刘兵, 柳林, 孙民等. 微量Cr对Cu基块体非晶合金的形成能力及耐蚀性能的影响[J]. 金属学报, 2005, 41: 738)
[18] Kou S Z, Zhang L, Lei J J, et al.Influence of Ni micro-addition on glass forming ability, thermal stability and corrosion-resistant performance of Cu50Zr42Al8 metallic glass[J]. Hot Work. Technol., 2007, 36(24): 1(寇生中, 张玲, 雷继军等. 微量组分Ni对Cu50Zr42Al8块状非晶的玻璃形成能力、热稳定性及耐腐蚀性能的影响[J]. 热加工工艺, 2007, 36(24): 1)
[19] Liu B, Liu L.Effect of micro Mo addition on anticorrosion ability of Cu base bulk metallic glass[J]. Acta Metall. Sin., 2007, 43: 82(刘兵, 柳林. 添加微量Mo对铜基块体非晶合金耐蚀性的影响[J]. 金属学报, 2007, 43: 82)
[20] Chen D, Dong J F, Cheng Y L, et al. Synthesis and corrosion behavior of Cu-Zr-Al-Ti bulk amorphous alloy[J]. Mater. Rev., 2012,26(5)B: 1(陈鼎, 董建峰, 程英亮等.Cu-Zr-Al-Ti块体非晶合金的制备及腐蚀行为研究 [J]. 材料导报, 2012, 26(5)B:1)
[21] Wang Z M, Chang X C, Lou W L, et al.Selective dissolution sensitive to minor alloying in CuZr-based metallic glasses[J]. Corros. Sci., 2013, 76: 465
[22] Pi J H, Pan Y, Wu J L, et al.Influence of minor addition of In on corrosion resistance of Cu-based bulk metallic glasses in 3.5%NaCl solution[J]. Rare Met. Mater. Eng., 2014, 43: 32
[23] Zhang C Z, Wang J H, Qiu N N, et al.Cerium addition on pitting corrosion of (Cu50Zr50)100-2xCe2x(x=0, 1, 2 and 3) metallic glasses in seawater[J]. J. Rare Earths, 2015, 33: 102
[24] Zhang C Z, Qiu N N, Kong L L, et al.Thermodynamic and structural basis for electrochemical response of Cu-Zr based metallic glass[J]. J. Alloys Compd., 2015, 645: 487
[25] Zhang W, Qin C L, Zhang X G, et al. Effects of additional noble elements on the thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys [J]. Mater. Sci. Eng., 2007,A449-451: 631
[26] Chen S F, Lin S L, Chen J K, et al.Thermal stability and corrosion behavior of Cu-Zr-Al-Y bulk metallic glass[J]. Intermetallics, 2010, 18: 1954
[27] Chen L Y, Xue Z, Xu Z J, et al.Cu-Zr-Al-Ti bulk metallic glass with enhanced glass-forming ability, mechanical properties, corrosion resistance and biocompatibility[J]. Adv. Eng. Mater., 2012, 14: 195
[28] Li X, Lv F, Geng Y X, et al.Preparation and corrosion property of (Cu50Zr50)(100-x)Ndx amorphous alloy[J]. Int. J. Electrochem. Sci., 2017, 12: 726
[29] Chen P, Qin F X, Zhang H F, et al.Corrosion behaviors of bulk amorphous alloy Cu-Zr-Ti-Sn and its crystallized form in 3.5% NaCl solution[J]. Acta Metall. Sin., 2004, 40: 207(陈鹏, 秦凤香, 张海峰等. 块状非晶合金Cu-Zr-Ti-Sn在3.5%NaCl溶液中的腐蚀行为[J]. 金属学报, 2004, 40: 207)
[30] Tam M K, Shek C H.Crystallization and corrosion resistance of Cu50Zr45Al5 bulk amorphous alloy[J]. Mater. Chem. Phys., 2006, 100: 34
[31] Gu Y D, Zheng Z, Niu S Z, et al.The seawater corrosion resistance and mechanical properties of Cu47.5Zr47.5Al5 bulk metallic glass and its composites[J]. J. Non Cryst. Solids, 2013, 380: 135
[32] Chen L, Li X.Electrochemical corrosion properties of Cu72Sn10 P10Ni8 amorphous ribbon[J]. Mater. Mech. Eng., 2015, 39(9): 53(陈琳, 李翔. Cu72Sn10P10Ni8非晶薄带的电化学腐蚀性能[J]. 机械工程材料, 2015, 39(9): 53)
[33] Qiao D C, Fan G J, Liaw P K, et al.Fatigue behaviors of the Cu47.5Zr47.5Al5 bulk-metallic glass (BMG) and Cu47.5Zr38Hf9.5Al5 BMG composite[J]. Int. J. Fatigue, 2007, 29: 2149
[34] Lide D R.CRC Handbook of Chemistry and Physics [M]. 90th Ed., Boca Raton: CRC Press, 2009
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.