Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (4): 349-356    DOI: 10.11902/1005.4537.2015.145
  研究报告 本期目录 | 过刊浏览 |
A1060纯Al的海洋大气环境腐蚀寿命预测模型研究
刘海霞1,程学群1,2(),李晓刚1,2,3,肖葵1,2,董超芳1,2
1. 北京科技大学腐蚀与防护中心 北京 100083
2. 北京科技大学 腐蚀与防护教育部重点实验室 北京 100083
3. 中国科学院宁波材料技术与工程研究所 宁波 315201
Prediction Model for Corrosion of Aluminum 1060 in Marine Atmospheric Environments
Haixia LIU1,Xuequn CHENG1,2(),Xiaogang LI1,2,3,Kui XIAO1,2,Chaofang DONG1,2
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2. Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China
3. Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(4633 KB)   HTML
摘要: 

采用周浸实验模拟了A1060纯Al在我国万宁、西沙两种海洋大气环境下的腐蚀行为,用扫描电镜(SEM)、能谱分析 (EDS)、X射线衍射 (XRD) 和失重法等方法研究了A1060纯Al在室内模拟大气环境和户外实际大气环境中的腐蚀形貌、腐蚀产物和腐蚀动力学之间的相关性。结果表明,周浸实验后A1060的腐蚀形貌、腐蚀产物组成、腐蚀动力学规律与实际热带海洋大气环境暴露实验结果的相关性较好。结合灰关联法建立了A1060在两种海洋大气环境下的腐蚀寿命预测模型。

关键词 A1060海洋大气腐蚀寿命预测    
Abstract

The corrosion behavior of pure aluminum A1060 in tropic marine environment was simulated by cyclic immersion test, while the correlation of the corresponding results of indoor cyclic immersion test and outdoor marine atmospheric corrosion test of A1060 was comparatively studied in terms of its corrosion morphology, corrosion products and corrosion kinetics by means of weight loss measurement scanning, electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results showed that the corrosion morphologies and phase constituents compositions of corrosion products after cyclic immersion test agreed fairly well with those after the real atmospheric test. Thereafter, a prediction model for the C corrosion prediction model of aluminum 1060 in two kinds of marine atmospheric environments, which aims to simulate the atmospheric environments at Wanning and Xisha areas in the South China Sea, was established built combined with Grey correlation method, while the corresponding arithmetic expressions could be described as follows i.e. TWN=146.7t 1.29 and TXS=862.3t 0.85 respectively.

Key wordsA1060    marine atmosphere    corrosion    life prediction
    
基金资助:国家重点基础研究发展计划项目 (2014CB643300) 和国家材料环境腐蚀平台项目资助

引用本文:

刘海霞,程学群,李晓刚,肖葵,董超芳. A1060纯Al的海洋大气环境腐蚀寿命预测模型研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 349-356.
Haixia LIU, Xuequn CHENG, Xiaogang LI, Kui XIAO, Chaofang DONG. Prediction Model for Corrosion of Aluminum 1060 in Marine Atmospheric Environments. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 349-356.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.145      或      https://www.jcscp.org/CN/Y2016/V36/I4/349

Exposure site Cl- deposition ratemg(100 cm2d)-1 SO2 deposition ratemg(100 cm2d)-1 Tow (h/year)RH>80% / ha-1
Wanning 0.387 0.0478 6736
Xisha 1.123 <0.001 5600
表1  大气试验站2006~2012年的环境因素和大气污染物参数[14,15]
图1  A1060纯Al在不同浓度NaCl溶液中周浸实验720 h的表面腐蚀形貌
图2  A1060纯Al在不同环境下周浸实验720 h后去除腐蚀产物后的表面腐蚀形貌
图3  A1060纯Al在不同模拟溶液中周浸实验后的表面EDS结果
图4  A1060纯Al在5%NaCl模拟溶液中周浸实验720 h后腐蚀产物的XRD谱
图5  A1060纯Al在不同模拟溶液中周浸腐蚀失重曲线
NaCl concentration A n R2
1% 0.136 0.333 0.959
2% 0.082 0.427 0.946
3.5% 0.014 0.775 0.902
5% 0.016 0.716 0.910
表2  腐蚀动力学曲线拟合值
Test time X0wn X1 X2 X3 X4
0.5 a (144 h) 0.47 0.712 0.685 0.659 0.562
1 a (288 h) 0.69 0.896 0.920 1.128 0.923
2 a (576 h) 1.01 1.129 1.237 1.930 1.516
3 a (864 h) 1.26 1.292 1.471 2.642 2.026
4 a (1152 h) 1.48 1.422 1.663 3.302 2.490
表3  万宁地区腐蚀失重的统计量
Test time X0xs X1 X2 X3 X4
0.5 a (72 h) 1.31 0.565 0.509 0.385 0.342
1 a (144 h) 2.0 0.712 0.685 0.659 0.562
2 a (288 h) 3.05 0.896 0.920 1.128 0.923
3 a (432 h) 3.91 1.026 1.094 1.544 1.233
4 a (576 h) 4.66 1.129 1.237 1.930 1.516
表4  西沙地区腐蚀失重的统计量
Test time Y0xs Y1 Y2 Y3 Y4
0.5 a (72 h) 1 1 1 1 1
1 a (144 h) 1.526 1.260 1.344 1.711 1.643
2 a (288 h) 2.329 1.587 1.808 2.928 2.698
3 a (432 h) 2.983 1.816 2.149 4.009 3.607
4 a (576 h) 3.555 1.999 2.430 5.011 4.432
表5  万宁地区腐蚀失重的预处理结果
Test time Y0wn Y1 Y2 Y3 Y4
0.5 a (144 h) 1 1 1 1 1
1 a (288 h) 1.465 1.260 1.344 1.711 1.643
2 a (576 h) 2.144 1.587 1.807 2.928 2.698
3 a (864 h) 2.682 1.816 2.149 4.009 3.607
4 a (1152 h) 3.140 1.999 2.430 5.011 4.432
表6  西沙地区腐蚀失重的预处理结果
NaCl concentration Wanning Xisha
1% 0.68 0.58
2% 0.77 0.64
3.5% 0.62 0.60
5% 0.68 0.69
表7  室内外大气腐蚀实验的灰关联度γ
图6  不同浓度的NaCl模拟溶液用以模拟万宁海洋大气环境时的γ和K
图7  不同浓度NaCl溶液模拟西沙海洋大气环境的γ和K
Outdoor exposure time / a Indoor simulated accelerated time (WN) / h Indoor simulated accelerated time (XS) / h
1 147 862
2 359 1554
4 877 2802
6 1480 3954
8 2145 5050
表8  基于预测模型得到的A1060 在万宁和西沙腐蚀的室内模拟加速时间表
[1] An B G, Zhang X Y, Han E-H, et al.Current status of atmospheric corrosion of aluminium and aluminium alloys[J]. Chin. J. Nonferrous Met., 2001, 11(z2): 11
[1] (安百刚, 张学元, 韩恩厚. 铝和铝合金的大气腐蚀研究现状[J]. 中国有色金属学报, 2001, 11(z2): 11)
[2] Li T, Li X G, Dong C F, et al.Characterization of atmospheric corrosion of 2A12 aluminum alloy in tropical marine environment[J]. J. Mater. Eng. Perform., 2010, 19(4): 591
[3] Sun S, Zheng Q, Li D, et al.Exfoliation corrosion of extruded 2024-T4 in the coastal environments in China[J]. Corros. Sci., 2011, 53(8): 2527
[4] Sun S, Zheng Q, Li D, et al.Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments[J]. Corros. Sci., 2009, 51(4): 719
[5] Luo L.Method of salt spray test[J]. Equip. Environ. Eng., 2011, 8(4): 77
[5] (罗兰. 盐雾试验方法探讨[J]. 装备环境工程, 2011, 8(4): 77)
[6] Xu N X, Zhang C D, Ding C H.A new scheme to accelerate the atmospheric corrosion test[J]. J. Chin. Soc. Corros. Prot., 1990,10(3): 228
[6] (徐乃欣, 张承典, 丁翠红. 加速大气腐蚀试验的一个新方案[J]. 中国腐蚀与防护学报, 1990, 10(3): 228)
[7] Li J L M S Z. Development of an artificial climatic complex accelerated corrosion tester and investigation of complex accelerated corro ion test methods[J]. Environ. Technol., 1999, 55(5): 498
[8] Wang J, Wang Z Y, Ke W.Corrosion behaviour of weathering steel in diluted Qinghai salt lake water in a laboratory accelerated test that involved cyclic wet/dry condition[J]. Mater. Chem. Phys., 2010, 124(2): 952
[9] Wei J, Fu X X, Dong J H, et al.Corrosion evolution of reinforcing steel in concrete under dry/wet cyclic conditions contaminated with chloride[J]. J. Mater. Sci. Technol., 2012, 28(10): 905
[10] Lyon S B, Thompson G E.Accelerated atmospheric corrision testing using a cyclic wet/dry exposure test: alunimum, galvanized steel, and steel[J]. Corrosion, 1987, 43(12): 719
[11] Wang Z Y, Yu G C, Han W.Correlation between atmospheric exposure corrosion and indoor accelerated corrosion simulation of steel[J]. Corros. Sci. Prot. Technol., 2004, 16(2): 70
[11] (王振尧, 于国才, 韩薇. 钢的大气暴露腐蚀与室内模拟加速腐蚀的相关性[J]. 腐蚀科学与防护技术, 2004, 16(2): 70)
[12] Zheng Q F, Sun S Q, Wen J G.Atmospheric corrosion and it's influence factors in aluminum and aluminum alloys in China[J]. Corros. Prot., 2009, 30(6): 359
[12] (郑弃非, 孙霜青, 温军国. 铝及铝合金在我国的大气腐蚀及其影响因素分析[J]. 腐蚀与防护, 2009, 30(6): 359)
[13] Montoya P, Díaz I, Granizo N, et al.An study on accelerated corrosion testing of weathering steel[J]. Mater. Chem. Phys., 2013, 142(1): 220
[14] Cui Z Y, Li X G, Xiao K, et al.Atmospheric corrosion behaviour of pure Al 1060 in tropical marine environment[J]. Corros. Eng. Sci. Technol., 2015, 50(6): 438
[15] Cao C N.Natural Environmental Corrosion of Chinese Materials[M]. Beijing: Chemical Industry Press, 2005
[15] (曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005)
[16] Cai J P, Liu M, Luo Z H, et al.Study on accelerated tests for aluminum alloy atmospheric corrosion[J]. J. Chin. Soc. Corros. Prot.,2005, 25(5): 262
[16] (蔡建平, 刘明, 罗振华等. 航空铝合金大气腐蚀加速试验研究[J]. 中国腐蚀与防护学报, 2005, 25(5): 262)
[17] Lin C, Wang F P, Li X G.Progress of atmospheric corrosion research[J]. J. Chin. Soc. Corros. Prot., 2004, 24(4): 245
[17] (林翠, 王凤平, 李晓刚. 大气腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2004, 24(4): 245)
[18] Wang L, Mou X L, Zhu L.Review of atmospheric corrosivity classification. Equipment environmental engineering[J]. 2010, 7(6): 24
[18] (王玲, 牟献良, 朱蕾等. 大气环境腐蚀性分类分级研究综述[J]. 装备环境工程, 2010, 7(6): 24)
[19] Wang Z Y, Ma T, Han W, et al.Corrosion behavior on aluminum alloy LY 12 in simulated atmospheric corrosion process[J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 326
[20] Boxley C J.Al203 film dissolution in aqueous chloride solutions[J]. Electrochem. Solid State Lett., 2003, 6(10): 38
[21] El-Mahdy G A, Kim K B. AC impedance study on the atmospheric corrosion of aluminum under periodic wet-dry conditions[J]. Electrochim. Acta, 2004, 49(12): 1937
[22] Szklarska-Smialowska Z.Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41(9): 1743
[23] Boag A, Taylor R J, Muster T H, et al.Stable pit formation on AA2024-T3 in a NaCl environment[J]. Corros. Sci., 2010, 52(1): 90
[24] Zhu H M, Zheng Q F, Xie S S.Atmospheric corrosion of Al and Al alloy in wanning area[J]. Rare Met., 2002, 26(6): 456
[24] (朱红嫚, 郑弃非, 谢水生. 万宁地区铝及铝合金不同距海点的大气腐蚀研究[J]. 稀有金属, 2002, 26(6): 456)
[25] Grilli R, Baker M A, Castle J E, et al.Localized corrosion of a 2219 aluminium alloy exposed to a 3.5%NaCl solution[J]. Corros. Sci., 2010, 52(9): 2855
[26] Zhou H R, Li X G, Dong C F.Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film[J]. Equip. Environ. Eng., 2006, 3(1): 1
[26] (周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展[J]. 装备环境工程, 2006, 3(1): 1)
[27] Pyun S I, Moon S M, Ahn S H, et al.Effects of Cl-, NO3- and SO42- ions on anodic dissolution of pure aluminum in alkaline solution[J]. Corros. Sci., 1999, 41: 653
[28] Mou X L,Tian Y E, Wang X H.Correlation between accelerated test and atmospheric corrosion test for carbon steel and low alloy steel[J]. Environ. Technol., 2001, (4): 14
[28] (牟献良, 田月娥, 汪学华. 碳钢和低合金钢模拟加速试验与大气腐蚀试验的相关性[J]. 环境技术, 2001, (4): 14)
[29] Tian Y W, Cheng X Q, Li X G.A study of simulated indoor accelerated testing method for marine atmospheric corrosion[J]. Corros. Prot., 2014, 35(8): 781
[29] (田玉琬, 程学群, 李晓刚. 海洋大气腐蚀的室内模拟加速试验方法研究[J]. 腐蚀与防护, 2014, 35(8): 781)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.