Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (6): 573-578    DOI: 10.11902/1005.4537.2017.195
  本期目录 | 过刊浏览 |
恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为
钟显康(),扈俊颖
1. 西南石油大学石油与天然气工程学院 油气藏地质及开发工程国家重点实验室 成都 610500
Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration
Xiankang ZHONG(),Junying HU
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
全文: PDF(2360 KB)   HTML
摘要: 

在初始pH值为5.80和初始Fe2+浓度为20 mg/L的条件下,采用离子交换树脂调节腐蚀过程中的pH值和Fe2+浓度,使pH值和Fe2+浓度在整个腐蚀过程中保持恒定。采用开路电位测试、线性极化技术、扫描电镜等手段研究了X65钢的CO2腐蚀行为,并与非恒定条件 (腐蚀过程中不调节pH值和Fe2+浓度) 下X65钢的CO2腐蚀行为进行了对比。结果表明,在非恒定的pH值和Fe2+浓度下,X65钢的腐蚀速率在120 h后迅速下降,220 h后腐蚀速率约为0.5 mm/a,样品表面的FeCO3膜完整且致密。在恒定的pH值和Fe2+浓度下,X65钢的腐蚀速率在160 h后才开始缓慢下降,220 h后腐蚀速率仍高达4.5 mm/a,样品表面FeCO3膜的裂纹较多,且与基体之间存在明显间隙。因此,在密闭容器中维持相对恒定的pH值和Fe2+浓度对获得与油气田现场一致的CO2腐蚀行为规律十分重要。

关键词 腐蚀碳钢离子交换pH值Fe2+    
Abstract

The corrosion test of carbon steel in a closed vessel with desired liquids will usually result in obviously changes in pH and ferrous ion concentration. However, in oil and gas field the pH and ferrous ion concentration at any specific location in side a pipeline does not change significantly with time. In this work, ion exchange resin was used to adjust the pH and ferrous ion concentration of the CO2containing liquids during the corrosion process of X65 steel in a small loop, where the initial pH was 5.80 and initial ferrous ion concentration was 20 mg/L. In this case, the test loop full of CO2containing liquids with constant pH and constant ferrous ion concentration was developed. Then, the corrosion of X65 steel in such an environment was investigated by open circuit potential, linear polarization resistance and surface analysis techniques. As a comparison, the corrosion of X65 carbon steel in liquid with inconstant pH and ferrous ion concentration (no adjustment for the pH and ferrous ion concentration during the corrosion) was also studied. The results showed that under the inconstant condition, the corrosion rate of X65 sharply decreased after 120 h. The corrosion rate was about 0.5 mm/a after 220 h. The corrosion product composed of very compact ferrous carbonate. However, under the condition of constant pH and ferrous ion concentration, the corrosion rate of X65 did not start to slowly decrease until 160 h; while the corrosion rate was still as high as 4.5 mm/a after 220 h. Many cracks in the corrosion products layer and obvious gaps between the substrate and corrosion product layer could also be found. Therefore, it is essential to maintain a relatively constant pH and ferrous ion concentration in a closed vessel of CO2containing liquid when one tries to reproduce the CO2corrosion behavior of carbon steel as that emerged in oil and gas field.

Key wordscorrosion    carbon steel    ion exchange    pH value    ferrous ion
收稿日期: 2017-11-20     
ZTFLH:  TG174.1  
基金资助:国家自然科学基金(51601159);四川省应用基础研究项目(2017JY0171)
通讯作者: 钟显康     E-mail: zhongxk@swpu.edu.cn
Corresponding author: Xiankang ZHONG     E-mail: zhongxk@swpu.edu.cn
作者简介: 钟显康,男,1984年生,博士,研究员

引用本文:

钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
Xiankang ZHONG, Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 573-578.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.195      或      https://www.jcscp.org/CN/Y2018/V38/I6/573

图1  pH值和Fe2+浓度控制装置示意图
图2  加入和不加入H型离子交换树脂时X65碳钢腐蚀过程中pH值随时间的变化曲线
图3  加入和不加入Na型离子交换树脂时X65碳钢腐蚀过程中Fe2+浓度随时间的变化曲线
图4  恒定和非恒定pH值和Fe2+浓度条件下X65碳钢在1%NaCl溶液中腐蚀220 h后的表面腐蚀产物横截面SEM像
图5  X65碳钢在恒定和非恒定的pH值和Fe2+浓度条件下腐蚀电位随时间的变化曲线
图6  X65钢在恒定和非恒定的pH值和Fe2+浓度条件下的腐蚀速率随时间变化曲线
[1] Nesic S,Sun W.Corrosion in acid gas solutions[A].In: Cottis B, Graham M, Stott H,eds. Shreir's Corrosion[M].Amsterdam:Elsevier Science,2010:1270
[2] Nordsveen M,Ne?i? S,Nyborg R,et al.A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: Theory and verification[J].Corrosion,2003,59:616
[3] Nesic S,Lee K L J.A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 3: Film growth model[J].Corrosion,2003,59:443
[4] Li W,Brown B,Young D,et al.Investigation of pseudo-passivation of mild steel in CO2corrosion[J].Corrosion,2014,70:294
[5] Lin X Q,Liu W,Zhang J,et al.Characteristics of corrosion scale of 3Cr steel at high temperature and pressure in an O2and CO2environment[J].Acta Phys.-Chim. Sin.,2013,29:2405
[5] 林学强,柳伟,张晶等.含O2高温高压CO2环境中3Cr钢腐蚀产物膜特征[J].物理化学学报,2013,29:2405
[6] Shen Q Y,Liu H F,Liu L W.Influence of sulfur deposition on corrosion behavior of carbon steel L360 covered with FeS- or FeCO3-film[J]. J Chin. Soc. Corros. Prot.,2016,36:79
[6] 沈秋燕,刘宏芳,刘烈伟.沉积硫对FeS及FeCO3膜结构及耐蚀性影响[J].中国腐蚀与防护学报,2016,36:79
[7] International ASTM.Corrosion Tests and Standards: Application and Interpretation[M].2nd Ed. West Conshohocken, ASTM International,2004:58
[8] Brown B.The design and development of a large scale, multiphase flow loop for the study of corrosion in sour gas environments[A].Corrosion 2002[C].Denver, Colorado: NACE International,2002
[9] Omar I H,Dugstad A,Gunaltun Y M,et al.H2S corrosion of carbon steel under simulated Kashagan field conditions[A].Corrosion 2005[C].Houston, Texas: NACE International,2005
[10] Dugstad A,Gulbrandsen E,Seiersten M,et al.Corrosion testing in multiphase flow, challenges and limitations[A].Corrosion 2006[C].San Diego, California: NACE International,2006
[11] Zheng Y G,Ning J,Brown B,et al.Mechanistic study of the effect of iron sulfide layers on hydrogen sulfide corrosion of carbon steel[A].Corrosion 2015[C].Dallas, Texas: NACE International,2015
[12] Faccini J,Ebrahimi S,Roberts D J.Regeneration of a perchlorate-exhausted highly selective ion exchange resin: Kinetics study of adsorption and desorption processes[J].Sep. Purif. Technol.,2016,158:266
[13] Zhang J,Amini A,O'Neal J A,et al.Development and validation of a novel modeling framework integrating ion exchange and resin regeneration for water treatment[J].Water Res.,2015,84:255
[14] Ebrahimi S,Roberts D J.Sustainable nitrate-contaminated water treatment using multi cycle ion-exchange/bioregeneration of nitrate selective resin[J]. J.Hazardous Mater.,2013,262:539
[15] Sun W,Ne?i? S,Woollam R C.The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit[J].Corros. Sci.,2009,51:1273
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.