Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (3): 219-225    DOI: 10.11902/1005.4537.2017.191
Current Issue | Archive | Adv Search |
Influence of Inhomogeneity of Tandem Welding Joint of 7A52 Al-alloy on Protectiveness of Micro-arc Oxidation Films on Its Surface
Lixin HAO1,2, Ruiling JIA1(), Huixia ZHANG2, Wei ZHANG3, Ting ZHAO1, Xiwei ZHAI1
1 Key Laboratory for Thin Film and Coatings of Inner Mongolia Autonomous Region, School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101, China
3 Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(3266KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Taking the susceptibility of the tandem welding joint of 7A52 Al-alloy into account,it is of significance to reveal the effect of the microstructural heterogeneity of the tandem metal inert gas welding joints of 7A52 Al-alloy on the corrosion performance of the micro-arc oxidation (MAO) films prepared on the surface of the weld plate by means of potentiondynamic polarization measurement, OM and SEM with EDS. It follows that the rolling base metal presents a typical fiber-like microstructure. The microstructure of the weld seam is as-cast dendritic structure. Grains in the fusion zone are equiaxed crystallites on the side adjacent to the weld, but are columnar on the other side near the heat-affected zone (HAZ). Recrystallization of grains in the heat affected zone has occurred. The growth rate of the MAO film on the weld seam is slower and Mg can be detected in the film, which may be responsible to the poor compactness and uniformity, and thus the weak passivity of the prepared MAO film, as a result, the protectiveness of the MAO film on the weld seam is worse than that on the HAZ and base metal. In general, for short-term immersion, the difference of the protectiveness of the MAO films on the weld seam, HAZ and base metal is not obvious, however, for long-term immersion, the protectiveness of the MAO film on the weld seam is obviously inferior to that on the HAZ and base metal.

Key words:  Al-alloy      tandem welding      corrosion      micro-arc oxidation     
Received:  16 November 2017     
ZTFLH:  TG174.45  
Fund: Supported by Natural Science Foundation of Inner Mongolia (2017MS(LH)0511) and Open Research Fund of State Key Laboratory for Marine Corrosion and Protection (KF160408)

Cite this article: 

Lixin HAO, Ruiling JIA, Huixia ZHANG, Wei ZHANG, Ting ZHAO, Xiwei ZHAI. Influence of Inhomogeneity of Tandem Welding Joint of 7A52 Al-alloy on Protectiveness of Micro-arc Oxidation Films on Its Surface. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 219-225.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.191     OR     https://www.jcscp.org/EN/Y2018/V38/I3/219

Fig.1  Section location and size of samples used for micro-arc oxidation treatment and OM microstructure observation (unit: mm)
Fig.2  Microstructures of the tandem welding joint of 7A52 aluminum alloy: (a) WB; (b) HAZ; (c) transition zone of HAZ and WB; (d) BM
Fig.3  SEM images of micro-arc oxidation films on the surfaces of the different zones of the tandem welding joint of 7A52 aluminum alloy: (a) WB; (b) HAZ; (c) BM
Fig.4  EDS line scannings of main elements on the cross-section of micro-arc oxidation films formed on the different zones of the tandem welding joint of 7A52 aluminum alloy: (a) WB; (b) HAZ; (c) BM
Fig.5  Polarization curves of the joint of 7A52 alloy without (a) and with 50 μm MAO film (b, c) after immersion in 3.5%NaCl solution for 30 min (a), 72 h (b) and 720 h (c), respectively
[1] Huang J W, Yin Z M, Lei X F.Microstructure and properties of 7A52 Al alloy welded joint[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 804
[2] Zhai X W, Chen F R, Bi L Y, et al.Welding parameters and mechanical properties of electron beam welding of 7A52 aluminum alloy[J]. Trans. China Weld. Inst., 2012, 33(8): 73(翟熙伟, 陈芙蓉, 毕良艳等. 7A52铝合金电子束焊接参数及性能[J]. 焊接学报, 2012, 33(8): 73)
[3] Xie R J, Chen F R, Zhang C C, et al.Twin-wire welding technology and corrosion resistance of weld seam for 7A52 aluminum alloy[J]. Trans. China Weld. Inst., 2008, 29(12): 57(解瑞军, 陈芙蓉, 张传臣等. 7A52铝合金双丝焊工艺及焊缝耐腐蚀性[J]. 焊接学报, 2008, 29(12): 57)
[4] Zhao J J, Li Q, Cai Z H, et al.Effects of secondary phases on stress corrosion property of friction stir welded seam of 7A52 aluminum alloy under different strain rates[J]. Trans. China Weld. Inst., 2013, 34(8): 63(赵军军, 李奇, 蔡志海等. 应变速率条件下第二相对7A52铝合金搅拌摩擦焊焊缝应力腐蚀性能的影响[J]. 焊接学报, 2013, 34(8): 63)
[5] Zhang P, Li Q, Zhao J J, et al.Analysis of secondary phases and measurement of Volta potential of 7A52 aluminum alloy[J]. Chin. J. Nonferrous Met., 2011, 21: 1252(张平, 李奇, 赵军军等. 7A52铝合金中第二相分析及微区电位测试[J]. 中国有色金属学报, 2011, 21: 1252)
[6] Zhang P, Li Q, Zhao J J, et al.Electrochemical local corrosion behavior of 7A52 aluminum alloy[J]. J. Shenyang Univ. Technol., 2012, 34: 154(张平, 李奇, 赵军军等. 7A52铝合金电化学局部腐蚀行为[J]. 沈阳工业大学学报, 2012, 34: 154)
[7] Zhang C C, Chen F R, Gao Y X.Analysis on single and double wire welding technology of 7A52 aluminum alloy[J]. Trans. China Weld. Inst., 2008, 29(9): 67(张传臣, 陈芙蓉, 高云喜. 7A52铝合金单双丝焊工艺对比分析[J]. 焊接学报, 2008, 29(9): 67)
[8] Zhu J, Wang Y Q, Chen D G, et al.Distortion and properties of 7A52 aluminum alloy welded joint by single and twin wire MIG welding[J]. Ordnance Mater. Sci. Eng., 2009, 32(5): 39(朱军, 王有祁, 陈东高等. 单丝、双丝MIG对7A52铝合金焊缝性能和变形的影响[J]. 兵器材料科学与工程, 2009, 32(5): 39)
[9] Yu J, Wang K H, Xu Y L, et al.Microstructures and properties of 7A52 aluminum alloy welded joint by twin wire welding[J]. Trans. China Weld. Inst., 2005, 26(10): 87(余进, 王克鸿, 徐越兰等. 7A52铝合金双丝焊接头的组织与性能[J]. 焊接学报, 2005, 26(10): 87)
[10] Miao J G, Wang Z Z, Shen Y.Analysis of phase compositions of the micro-arc oxidation ceramic coatings on aluminum and aluminum alloy[J]. Light Alloy Fabric. Technol., 2015, 43(4): 21(苗景国, 王泽忠, 沈钰. 铝合金微弧氧化陶瓷膜层相组成述评及分析[J]. 轻合金加工技术, 2015, 43(4): 21)
[11] Mu W Y, Li Z X, Du J H, et al.Research progress of ceramic coatings formed on aluminum alloys by micro-arc oxidation[J]. Surf. Technol., 2013, 42(4): 94(慕伟意, 李争显, 杜继红等. 铝合金微弧氧化陶瓷涂层研究进展[J]. 表面技术, 2013, 42(4): 94)
[12] Walsh F C, Low C T J, Wood R J K, et al. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys[J]. Trans. IMF, 2009, 87: 122
[13] Zhang Z H, Dong S Y, Wang Y J, et al.Microstructure and properties of fiber laser welded 7A52 Al alloy joints[J]. Appl. Laser, 2014, 34: 567(张智慧, 董世运, 王玉江等. 7A52铝合金光纤激光焊接接头组织与性能研究[J]. 应用激光, 2014, 34: 567)
[14] Zhang P, Li Q, Zhao J J, et al.Morphology and phase constituent of second phases in friction stir welded joint of 7A52 aluminum alloy[J]. J. Shenyang Univ. Technol., 2011, 33: 246(张平, 李奇, 赵军军等. 7A52铝合金搅拌摩擦焊接头第二相的形貌及相组成[J]. 沈阳工业大学学报, 2011, 33: 246)
[15] Tseng C C, Lee J L, Kuo T H, et al.The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy[J]. Surf. Coat. Technol., 2012, 206: 3437
[16] Xu L N, Zhu J Y, Wang B.Influence of Cr content and PH value on the semi-passivation behavior of low Cr pipeline steels[J]. Acta Metall. Sin., 2017, 53: 677(徐立宁, 朱金阳, 王贝. Cr含量和PH值对低铬管线钢半钝化行为的影响[J]. 金属学报, 2017, 53: 677)
[17] Li Z S, Wu H L, Pan F S, et al.Effect of oxidation time on micro-arc oxidation ceramic coatings formed on 7A55 aluminium alloy[J]. J. Aeronaut. Mater., 2009, 29(3): 23(李忠盛, 吴护林, 潘复生等. 氧化时间对7A55铝合金微弧氧化膜的影响[J]. 航空材料学报, 2009, 29(3): 23)
[18] Liu X L, Lu L, Zou Z F, et al.Preparation and corrosion behaviors of micro-arc oxidation ceramic coating on 5083 aluminum alloy[J]. Spec. Cast. Nonferrous Alloy., 2013, 33: 85(刘晓龙, 鲁亮, 邹志锋等. 5083铝合金微弧氧化膜的制备及腐蚀特性[J]. 特种铸造及有色合金, 2013, 33: 85)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!