Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (3): 226-232    DOI: 10.11902/1005.4537.2017.179
Current Issue | Archive | Adv Search |
Corrosion Performance of Underwater Welded Joints of E40 Steel in Coastal Water of Qingdao via Mass-loss Method
Xiangfeng KONG1,2, Jing ZHANG2, Yuanqing JIANG3, Dongzhi CHU2, Chunhu LI1, Nan GAO2, Jing LV2, Yan ZOU2()
1 College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2 Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266001, China
3 Yantai Oceanic Environmental Monitoring Central Station, State Oceanic Administration, Yantai 264006, China
Download:  HTML  PDF(5389KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion morphology and corrosion rate of underwater welding joints, which were prepared via underwater wet welding with E40 steel plate as base material and 359S as special welding rod, in coastal water of Qingdao was assessed by means of corrosion weight loss method. Results indicated that no corrosion was observed on the weld seam, while the base metal and heat affected zone suffered from serious corrosion after immersion in seawater. With the increase of immersion time, corrosion pits on the test samples are increasing, growing and deepening. The micro-morphology of the base metal varied slightly with time. But, the microstructure of the HAZ is more complex and presents a variety of features compared with the base metal. There is a good linear relation between the mass-loss and the corrosion time. The average corrosion rate of the HAZ and base metal is 0.180 mm/a. Temperature has a great influence on the corrosion rate, and the corrosion rate (0.250 mm/a) in the summer and autumn period in Qingdao seawater is much higher than that in the winter and spring, which is 0.118 mm/a.

Key words:  underwater welded      welded corrosion      mass-loss method      corrosion morphology     
Received:  02 November 2017     
ZTFLH:  TG172.5  
Fund: Supported by National Natural Science Foundation of China (41406104 and 51209129), Qingdao Applied Basic Research Fund Project and Science (16-5-1-24-jch) and Technology Development Fund Projectin Shinan District of Qingdao City (2014-14-012-SW)

Cite this article: 

Xiangfeng KONG, Jing ZHANG, Yuanqing JIANG, Dongzhi CHU, Chunhu LI, Nan GAO, Jing LV, Yan ZOU. Corrosion Performance of Underwater Welded Joints of E40 Steel in Coastal Water of Qingdao via Mass-loss Method. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 226-232.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.179     OR     https://www.jcscp.org/EN/Y2018/V38/I3/226

Fig.1  Welded joint (a) and specimen for coupon corrosion test (b)
Fig.2  Metallographic structure near the HAZ of underwater welded joint (showing the different zones: I- weld metal, II-complete quenching zone, III-incomplete quenching zone, IV-tempered zone and V-base metal)
Fig.3  Macrographs of underwater welded joints after immersion in seawater for 90 d: (a) the first set of samples E0, E1, E4, E5 and X1; (b) the sample E0 removed from the shelf
Fig.4  Macroscopic morphologies of underwater welded joints with removal of marine fouling organisms (a) and rust layers (b~e) after immersion for 90 d (a, b), 173 d (c), 376 d (d) and 1258 d (e)
Fig.5  SEM images of base metal (a, c) and heat affected zone (b, d) of underwater welded joint samples after immersion in seawater for 90 d (a1~d1), 173 d (a2~d2), 376 d (a3~d3), 1258 d (a4~d4) and then removal of rust layers
Time / d No. W0 / g W1 / g W0-W1 / g S / cm2 v- / gm-2h-1 vL / mma-1 Average vL / mma-1
2012/8/1
90 d
E0 627.07 615.39 11.68 307.50 0.176 0.196 0.195
E1 627.44 616.01 11.43 311.28 0.170 0.189
E4 626.22 614.50 11.72 304.63 0.178 0.198
E5 627.94 616.39 11.55 306.24 0.175 0.194
X1 629.52 617.64 11.88 309.82 0.178 0.198
2012/10/23
173 d
A0 630.27 600.09 30.18 310.68 0.234 0.261 0.250
A1 626.85 601.31 25.54 308.72 0.199 0.222
A5 628.46 601.36 27.10 304.55 0.214 0.239
A7 632.41 600.39 32.02 308.50 0.250 0.278
2013/5/14
376 d
B1 630.43 587.09 43.34 307.83 0.156 0.174 0.180
B2 629.12 583.10 46.02 308.23 0.165 0.184
B4 631.60 586.64 44.96 305.11 0.163 0.182
B7 628.09 583.99 44.10 305.20 0.160 0.178
2015/10/13
1258 d
C0 630.10 465.44 164.66 310.24 0.176 0.196 0.192
C2 630.24 462.05 168.19 311.77 0.179 0.199
C4 632.80 479.67 153.13 305.11 0.166 0.185
C7 629.67 474.34 155.33 305.20 0.169 0.188
Table 1  Weight loss calculating parameters and mean corrosion rate of underwater welded joint of E40 steel
Fig.6  Mass loss and corrosion rate of underwater welded joint as a function of time
[1] Rowe M, Liu S.Recent developments in underwater wet welding[J]. Sci. Technol. Weld Join., 2014, 6(6): 387
[2] Bai Q, Zou Y, Kong X F, et al.The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater[J]. J. Ocean U. China, 2017, 16(1): 49
[3] Davis J R.Corrosion of Weldments[M]. Russel: ASM Int., 2006: 6
[4] Zhu J, Xu L, Feng Z, et al.Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel[J]. Corros. Sci., 2016, 111: 391
[5] Hou B, Li X, Ma X, et al.The cost of corrosion in China[J]. NPJ Mater. Degrad., 2017, 1(1): 4
[6] Xu L Y, Kang Z Y, Lu Y X, et al.Analysis of corrosion behavior of carbon steel weld joint[J]. Trans. China Weld. Inst., 2018, 39(1): 97(徐连勇, 亢朝阳, 路永新等. 碳钢焊接接头腐蚀行为分析[J]. 焊接学报, 2018, 39(1): 97)
[7] Bai Q, Zou Y, Kong X F, et al.Electrochemical corrosion behavior in seawater of weld joints of CCSE40 steel prepared by underwater wet welding with austenitic welding rod[J]. J. Chin. Soc. Corros. Prot., 2016, 36(5): 427(白强, 邹妍, 孔祥峰等. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427)
[8] Hu Q, Liu J, Wang Y K, et al.Corrosion performance of different zones for weld joint of A710 steel in 3.5%NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2016, 36(6): 611(胡骞, 刘静, 王玉昆等. 不同组织A710钢在NaCl溶液中耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 611)
[9] Guo N, Yang Z, Wang M, et al.Microstructure and mechanical properties of an underwater wet welded dissimilar ferritic/austenitic steel joint[J]. Strength Mater., 2015, 47(1):12
[10] Lippold J C.Welding Metallurgy and Weldability[M]. Hoboken: Wiley Blackwell, 2014: 85
[11] Kong D Y, Wang S Y, Song S Z.Study on relativity between corrosion images and data of metallic samples in seawater[J]. J. Chin. Soc. Corros. Prot., 2001, 21(6): 352(孔德英, 王守琰, 宋诗哲等. 金属材料腐蚀形貌图像与实海挂片数据的相关性研究[J]. 中国腐蚀与防护学报, 2001, 21(6): 352)
[12] Wang Z H, Huang Y H, Li J, et al.Effect of Nb on corrosion behavior of simulated weld HAZs of X80 pipeline steel in simulated seawater environments corresponding to shallow sea and deep sea[J]. J. Chin. Soc. Corros. Prot., 2016, 36(6): 604(王子豪, 黄运华, 李佳等. Nb对X80钢焊接热影响区在模拟海水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 604)
[13]
[14] Peng X, Wang J, Shan C, et al.Corrosion behavior of long-time immersed rusted carbon steel in flowing seawater[J]. Acta Metall. Sin., 2012, 48: 1260(彭欣, 王佳, 山川等. 带锈碳钢在流动海水中的长期腐蚀行为[J]. 金属学报, 2012, 48: 1260)
[15] Liu Z Y, Wan H X, Li C, et al.Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea environment[J]. J. Chin. Soc. Corros. Prot., 2014, 34(4): 321(刘智勇,万红霞,李禅等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比 [J]. 中国腐蚀与防护学报, 2014, 34(4): 321)
[16] Yang H Y, Huang G Q.Influence of environment factors on corrosion rate of carbon steel at the early stage in seawater[J]. Corros. Prot., 2014, 35(6): 576(杨海洋, 黄桂桥. 环境因素对碳钢实海暴露初期腐蚀速率的影响[J]. 腐蚀与防护, 2014, 35(6): 576)
[17] Huang B S, Lu D H, Yang Y S, et al.Corrosion behavior of welded joint of Q345 steel and 316L steel[J]. Mater. Prot., 2014, 47(9): 22(黄本生, 卢东华,杨逸莎等. Q345/316L钢焊接接头的腐蚀性能[J]. 材料保护, 2014, 47(9): 22)
[1] HU Zongwu, LIU Jianguo, XING Rui, YIN Fabo. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[2] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[3] YE Chao, DU Nan, TIAN Wenming, ZHAO Qing, ZHU Li. Effect of pH on Pitting Corrosion Process of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[4] CHENG Congqian, CAO Tieshan, WANG Dongying, YAO Jingwen, WANG Jian, GUAN Meng, ZHAO Jie. Erosion-corrosion Morphology of Cr13 Stainless Steel Induced by Jet Flow of Hydrochloric Acid Solution[J]. 中国腐蚀与防护学报, 2014, 34(5): 439-444.
[5] WU Tangqing, YANG Pu, ZHANG Mingde, XU Jin, YAN Maocheng, YU Changkun, SUN Cheng. Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (II) Corrosion Morphology and Corrosion Product Analysis[J]. 中国腐蚀与防护学报, 2014, 34(4): 353-358.
[6] LIU Tao,AI Jun,ZHANG Lifang,ZHANG Pengfei,
YANG Zhaohui,XU Chunlin. Life Prediction of Anti-corrosion Coating for Steel Box Girder by In-door Simulation Tests Combined with #br#Image Processing Technique[J]. 中国腐蚀与防护学报, 2013, 33(5): 407-412.
[7] HAN Xiabing,GAO Zhiming,DANG Lihua,WANG Ying,BI Huichao. Wavelet Packet Analysis of Early Corrosion Image of Q235 Steel in Simulated Atmospheric Environment[J]. 中国腐蚀与防护学报, 2013, 33(3): 211-215.
[8] ZOU Yan, WANG Jia, ZHENG Yingying. ELECTROCHEMICAL STUDY ON CORROSION OF RUSTED CARBON STEEL[J]. 中国腐蚀与防护学报, 2011, 31(2): 91-96.
[9] Shouyan Wang. CONSULTATION AND FORECAST DIAGNOSIS SYSTEM OF METAL IN MARINE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2004, 24(2): 108-111 .
No Suggested Reading articles found!