|
|
|
| Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure |
ZHAO Qian1, ZHANG Jie1, MAO Ruirui2, MIAO Chunhui1, BIAN Yafei2, TENG Yue1, TANG Wenming2( ) |
1 Electric Power Research Institute, Anhui Electric Power Co., Ltd., State Grid, Hefei 230601, China 2 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China |
|
Cite this article:
ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1305-1315.
|
|
|
Abstract The corrosion behavior of hot-dip galvanized coating on the Q235 steel plates commonly-used in grid equipment by applied bending stress was studied via immersion test in 0.05 mol/L NaCl solution while applied bending stress with a home-made three-point bending stress loading device. The results showed that by the applied bending stress, the corrosion of the hot-dip galvanized coating on Q235 steel plate was a process of repeated formation and spallation of corrosion products, of which the former involves apparently the occurrence of corrosion pits, while the later does not. The corrosion products were mainly composed of ZnO, Zn(OH)2 and Zn5(OH)8Cl2·H2O. As the applied stress increased, the Ecorr was decreased, but the Icorr and the electrochemical impedance were increased for the hot-dip galvanized coating on Q235 steel plate. A corrosion model was established to illustrate the corrosion process and the relevant mechanism for the corrosion of the hot-dip galvanized coating/Q235 steel plate. That is, the corrosion of the hot-dip galvanized coating was speeded by the applied bending stress to form more corrosion product Zn5(OH)8Cl2·H2O, which induced the formation of cracks at the stress concentrated sites beneath the corrosion product, i.e., the corrosion pits in η-Zn layer. The cracks then penetrated through the η-Zn layer, and extended along the interface ζ-FeZn13/η-Zn. As a result, electrochemical corrosion of the galvanized coating was accelerated.
|
|
Received: 16 October 2023
32134.14.1005.4537.2023.324
|
|
|
| Fund: Science and Technology Research Project of Anhui Electric Power Co., Ltd., State Grid, China(B3120522001G) |
Corresponding Authors:
TANG Wenming, E-mail: wmtang69@126.com
|
| 1 |
Li L M, Zhang J, Bian Y F, et al. Atmospheric corrosion characteristics and regularity of the Q235, 40Cr steels commonly-used in power grid equipment in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 535
|
|
李乐民, 张 洁, 卞亚飞 等. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律 [J]. 中国腐蚀与防护学报, 2023, 43: 535
doi: 10.11902/1005.4537.2022.201
|
| 2 |
Zhao Q, Zhang J, Li L M, et al. Study on the Atmospheric corrosion of galvanized steel in the Anhui province power grid and its influence law [J]. Mater. Prot., 2024, 57(5): 191
|
|
赵 骞, 张 洁, 李乐民 等. 安徽省电网用镀锌钢的大气腐蚀及其影响规律 [J]. 材料保护, 2024, 57(5): 191
|
| 3 |
Gu M L, Liu X, Zhang Z Y, et al. Characteristics and development status of hot-dip galvanizing and zinc alloy coating in continuous strips [J]. Mater. Prot., 2019, 52(9): 176
|
|
谷美玲, 刘 昕, 张子月 等. 连续板带热镀锌及锌合金镀层的特点与展望 [J]. 材料保护, 2019, 52(9): 176
|
| 4 |
Shibli S M A, Meena B N, Remya R. A review on recent approaches in the field of hot dip zinc galvanizing process [J]. Surf. Coat. Technol., 2015, 262: 210
|
| 5 |
Yadav A P, Katayama H, Noda K, et al. Effect of Fe–Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments [J]. Corros. Sci., 2007, 49: 3716
|
| 6 |
Carpio J, Casado J A, Álvarez J A, et al. Stress corrosion cracking of structural steels immersed in hot-dip galvanizing baths [J]. Eng. Fail. Anal., 2010, 17: 19
|
| 7 |
Liu C S, Dong Z C, Wang R M, et al. Atmospheric corrosion and protection of power transmission steel tower components in industrial pollution area [J]. J. Hefei Univ. Technol. (Nat. Sci.), 2023, 46: 906
|
|
刘昌帅, 董泽才, 王若民 等. 工业污染区输电铁塔构件的大气腐蚀与防护 [J]. 合肥工业大学学报(自然科学版), 2023, 46: 906
|
| 8 |
Qiu N, Yao Q, Miao Y L, et al. Corrosion behavior of angle steel galvanized layer of power tower in NaCl solution [J]. Surf. Technol., 2011, 40(5): 5
|
|
邱 妮, 姚 强, 苗玉龙 等. 电力铁塔角钢镀锌层在NaCl介质中的腐蚀行为研究 [J]. 表面技术, 2011, 40(5): 5
|
| 9 |
Wang J, Ning P D, Liu Q Q, et al. Corrosion behavior of galvanized steel in a simulated marine atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 578
|
|
王 瑾, 宁培栋, 刘倩倩 等. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理 [J]. 中国腐蚀与防护学报, 2023, 43: 578
|
| 10 |
Qu Q, Yan C W, Wan Y, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc [J]. Corros. Sci., 2002, 44: 2789
|
| 11 |
Zhang R K, Cheng H H, Wu Y B, et al. Corrosion behavior of galvanized steel for power transmission tower in solutions with different concentrations of NaCl and NaHSO3 [J]. Corros. Sci. Prot. Technol., 2018, 30: 585
|
|
张仁坤, 程红红, 吴跃斌 等. 输电铁塔用镀锌钢在不同浓度NaCl和NaHSO3中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2018, 30: 585
doi: 10.11903/1002.6495.2017.305
|
| 12 |
Wu W Y. Corrosion simulation study of galvanized steel in salt spray environment [D]. Harbin: Harbin Institute of Technology, 2022
|
|
吴唯余. 镀锌钢在盐雾环境下的腐蚀模拟研究 [D]. 哈尔滨: 哈尔滨工业大学, 2022
|
| 13 |
Liu X. Research on the destruction caused by stress corrosion to the galvanized steel coating of electric power tower [D]. Ji’nan: Shandong University, 2015
|
|
刘 霄. 输电线杆塔镀锌钢镀层应力腐蚀破坏研究 [D]. 济南: 山东大学, 2015
|
| 14 |
Li R, Miao C Q, Wei T H. Experimental study on corrosion behaviour of galvanized steel wires under stress [J]. Corros. Eng. Sci. Technol., 2020, 55: 622
|
| 15 |
Yang W J, Yang P, Li X M, et al. Influence of tensile stress on corrosion behaviour of high-strength galvanized steel bridge wires in simulated acid rain [J]. Mater. Corros., 2012, 63: 401
|
| 16 |
Li J J. Effect of surface condition of steel on microstructure of hot-dip galvanized coating [D]. Tianjin: Hebei University of Technology, 2019
|
|
李娇娇. 钢基表面状态对热镀锌层组织的影响 [D]. 天津: 河北工业大学, 2019
|
| 17 |
Ploypech S, Boonyongmaneerat Y, Jearanaisilawong P. Crack initiation and propagation of galvanized coatings hot-dipped at 450°C under bending loads [J]. Surf. Coat. Technol., 2012, 206: 3758
|
| 18 |
Marder A R. The metallurgy of zinc-coated steel [J]. Prog. Mater. Sci., 2000, 45: 191
|
| 19 |
Zhao Q, Tang W M, Miao C H, et al. A stress corrosion clamping device with readable stress magnitude [P]. China Pat., 219015877U, 2023
|
|
赵 骞, 汤文明, 缪春辉 等. 一种应力大小可读的应力腐蚀夹持装置 [P]. 中国专利, 219015877U, 2023)
|
| 20 |
Zhao Y, Huang H J, Wang J, et al. The stress corrosion of wind power tower tube metal in atmospheric environment [J]. Environ. Technol., 2013, 31(1): 5
|
|
赵 钺, 黄海军, 王 俊 等. 大气环境下风电塔筒金属材料的应力腐蚀 [J]. 环境技术, 2013, 31(1): 5
|
| 21 |
Li L, Gu B S, Yang P Y, et al. Electrochemical study on corrosion behavior of hot dip galvanized zinc and zinc–aluminum alloy coatings in simulated marine atmospheric environment [J]. Electroplat. Finish., 2011, 30(3): 40
|
|
李 黎, 顾宝珊, 杨培燕 等. 热浸镀锌及锌铝合金镀层在模拟海洋大气环境中腐蚀行为的电化学研究 [J]. 电镀与涂饰, 2011, 30(3): 40
|
| 22 |
Hou R, Xu G, Dai F Q, et al. Effect of coating thickness on corrosion resistance of hot galvanized plate [J]. Mater. Prot., 2017, 50(6): 5
|
|
侯 蓉, 徐 光, 戴方钦 等. 镀层厚度对热镀锌热轧板耐蚀性的影响 [J]. 材料保护, 2017, 50(6): 5
|
| 23 |
Song Y L, Fu H D, Wang Z, et al. Stress corrosion cracking of magnesium alloys: mechanism, influencing factors, and prevention technology [J]. Mater. Rep., 2019, 33: 834
|
|
宋雨来, 付洪德, 王 震 等. 镁合金的应力腐蚀开裂: 机理、影响因素、防护技术 [J]. 材料导报, 2019, 33: 834
|
| 24 |
Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
|
| 25 |
Liu Y W, Wang Z Y, Wang J, et al. Corrosion behavior of hot-dip galvanized steel for power transmission tower in simulated acid rain atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 426
|
|
刘雨薇, 王振尧, 王 军 等. 输电塔杆用热浸镀锌钢在模拟酸雨大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2014, 34: 426
doi: 10.11902/1005.4537.2014.015
|
| 26 |
Zheng L Y. Electrochemical study of zinc and carbon steel galvanized layer on failure process in simulated atmospheric environment [D]. Hangzhou: Zhejiang University, 2011
|
|
郑利云. 锌及碳钢镀锌层在模拟大气环境中失效过程的电化学研究 [D]. 杭州: 浙江大学, 2011
|
| 27 |
Yuan X J, Zhang J X, Zhang S M, et al. Corrosion behavior of galvanized steel for power transmission tower with breakage of zinc coating in polluted environment [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 395
|
|
原徐杰, 张俊喜, 张世明 等. 镀锌层破损输电杆塔用镀锌钢在干湿交替作用下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2013, 33: 395
|
| 28 |
Lin X L. Study on localized corrosion behavior of galvanized coatings and passive films based on SECM [D]. Nanning: Guangxi University, 2022
|
|
林学亮. 基于SECM探究镀锌层及其钝化膜的微区腐蚀行为 [D]. 南宁: 广西大学, 2022
|
| 29 |
op't Hoog C, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route [J]. Adv. Eng. Mater., 2008, 10: 579
|
| 30 |
Sun Q L, Zhang L, Dong J, et al. Study on electrochemical behavior of prestressed reinforcement in simulated concrete solution [J]. Appl. Mech. Mater., 2013, 357-360: 917
|
| 31 |
Lu Y. The effect of tensile deformation on the stress corrosion behavior of AZ31 magnesium alloys [D]. Taiyuan: Taiyuan University of Technology, 2021
|
|
鲁 晔. 拉伸变形对AZ31镁合金应力腐蚀行为影响 [D]. 太原: 太原理工大学, 2021
|
| 32 |
Li M, Dong N N, Shang T, et al. Study on initial corrosion behavior of Zn-Al-Mg coating and pure zinc coating in typical atmospheric environment [J]. Surf. Technol., 2024, 53(2): 120
|
|
黎 敏, 董妮妮, 商 婷 等. 锌铝镁镀层和纯锌镀层在典型大气环境中初期腐蚀行为研究 [J]. 表面技术, 2024, 53(2): 120
|
| 33 |
Mattsson E. The atmospheric corrosion properties of some common structural metals: a comparative study [J]. Mater. Perform., 1982, 21: 9
|
| 34 |
Xiao L. Plastic deformation of hexagonal close-packed metals [J]. Rare Met. Mater. Eng., 1995, 24(6): 21
|
|
肖 林. 密排六方金属的塑性变形 [J]. 稀有金属材料与工程, 1995, 24(6): 21
|
| 35 |
Zhang J R, Wang Y C. Study on processes of superplastic deformation of Zn-4%Al alloy [J]. J. Harbin Inst. Technol., 1985, 17(suppl.3) : 1
|
|
张吉人, 王雨丛. Zn-4%Al合金超塑性变形微观过程的研究 [J]. 哈尔滨工业大学学报, 1985, 17(): 1
|
| 36 |
Luo B H, Zhou S C. The study of superplastic mechanism of Zn-Al eutectoid alloy [J]. Mater. Sci. Eng., 1995, 13(4): 22
|
|
罗兵辉, 周善初. Zn-Al共析合金室温超塑性变形机理 [J]. 材料科学与工程, 1995, 13(4): 22
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|