Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1305-1315    DOI: 10.11902/1005.4537.2023.324
Current Issue | Archive | Adv Search |
Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure
ZHAO Qian1, ZHANG Jie1, MAO Ruirui2, MIAO Chunhui1, BIAN Yafei2, TENG Yue1, TANG Wenming2()
1 Electric Power Research Institute, Anhui Electric Power Co., Ltd., State Grid, Hefei 230601, China
2 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
Cite this article: 

ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1305-1315.

Download:  HTML  PDF(18955KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of hot-dip galvanized coating on the Q235 steel plates commonly-used in grid equipment by applied bending stress was studied via immersion test in 0.05 mol/L NaCl solution while applied bending stress with a home-made three-point bending stress loading device. The results showed that by the applied bending stress, the corrosion of the hot-dip galvanized coating on Q235 steel plate was a process of repeated formation and spallation of corrosion products, of which the former involves apparently the occurrence of corrosion pits, while the later does not. The corrosion products were mainly composed of ZnO, Zn(OH)2 and Zn5(OH)8Cl2·H2O. As the applied stress increased, the Ecorr was decreased, but the Icorr and the electrochemical impedance were increased for the hot-dip galvanized coating on Q235 steel plate. A corrosion model was established to illustrate the corrosion process and the relevant mechanism for the corrosion of the hot-dip galvanized coating/Q235 steel plate. That is, the corrosion of the hot-dip galvanized coating was speeded by the applied bending stress to form more corrosion product Zn5(OH)8Cl2·H2O, which induced the formation of cracks at the stress concentrated sites beneath the corrosion product, i.e., the corrosion pits in η-Zn layer. The cracks then penetrated through the η-Zn layer, and extended along the interface ζ-FeZn13/η-Zn. As a result, electrochemical corrosion of the galvanized coating was accelerated.

Key words:  Q235 steel structure      hot-dip galvanized layer      stress corrosion      microstructure      corrosion mechanism     
Received:  16 October 2023      32134.14.1005.4537.2023.324
ZTFLH:  TG174.3  
Fund: Science and Technology Research Project of Anhui Electric Power Co., Ltd., State Grid, China(B3120522001G)
Corresponding Authors:  TANG Wenming, E-mail: wmtang69@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.324     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1305

Fig. 1  Cross-sectional morphology of galvanized Q235 steel plate (a) and schematic diagram of the stress corrosion sample (b)
Fig.2  Schematic diagram of three-point bending device used in the test
Fig.3  Stress-strain curve of the galvanized steel sample in the tensile test
Fig.4  Optical photos of galvanized steel samples immersed in 0.05 mol/L NaCl solution for 144 h under 0 MPa (a), 89 MPa (b) and 178 MPa (c)
Stress / MPam0 / gm1 / gm / g
024.301924.3010-0.0009
8925.278225.1925-0.0857
17824.964024.8588-0.1052
Table 1  Masses and corrosion induced mass changes of galvanized steel samples before and after immersion under 0, 89 and 178 MPa
Fig.5  XRD patterns of galvanized steel samples after immersion under different stresses
Fig.6  Low-magnification (a) and high-magnification (b) SEM images of the galvanized steel sample immersed under stress free, and EDS results (c, d) of the points 1 and 2 marked in Fig.6a and b, respectively
Fig.7  Low-magnification (a) and high-magnification (b) SEM images of the galvanized steel sample immersed under 89 MPa, and EDS results (c, d) of the points 1 and 2 marked in Fig.7a and b, respectively
Fig.8  Low-magnification (a) and high-magnification (b) SEM images of the galvanized steel sample immersed under 178 MPa, and morphology of the pit in Fig.8a (c), and EDS result of the point 1 marked in Fig.8c (d)
Fig.9  Cross-sectional morphologies of the galvanized steel samples after immersion under 0 MPa (a, b), 89 MPa (c, d) and 178 MPa (e, f)
Fig.10  Tafel curves of the galvanized steel samples after immersion under different stresses

Stress

MPa

βa

V·dec-1

βc

V·dec-1

Rp

Ω·cm2

Ecorr

V vs SCE

Icorr

μA·cm-2

1784.9616.827615.5-1.157159.93
8911.6741.0628490.9-1.04854.021
0 (No stress)1.6956.8421885.2-0.79131.29
Table 2  Fitting electrochemical parameters of the polarization curves in Fig. 10
Fig.11  EIS spectra of the galvanized steel samples after immersion under different stresses
Fig.12  Equivalent circuit models of the galvanized steel samples after immersion under 0 and 178 MPa (a), and 89 MPa (b)
Fig.13  Stress corrosion model of the galvanized layer of Q235 steel: (a, b) formation of corrosion pit, (c) formation and propagation of stress corrosion crack in η-Zn layer, (d) propagation of the stress corrosion crack in ζ phase layer
1 Li L M, Zhang J, Bian Y F, et al. Atmospheric corrosion characteristics and regularity of the Q235, 40Cr steels commonly-used in power grid equipment in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 535
李乐民, 张 洁, 卞亚飞 等. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律 [J]. 中国腐蚀与防护学报, 2023, 43: 535
doi: 10.11902/1005.4537.2022.201
2 Zhao Q, Zhang J, Li L M, et al. Study on the Atmospheric corrosion of galvanized steel in the Anhui province power grid and its influence law [J]. Mater. Prot., 2024, 57(5): 191
赵 骞, 张 洁, 李乐民 等. 安徽省电网用镀锌钢的大气腐蚀及其影响规律 [J]. 材料保护, 2024, 57(5): 191
3 Gu M L, Liu X, Zhang Z Y, et al. Characteristics and development status of hot-dip galvanizing and zinc alloy coating in continuous strips [J]. Mater. Prot., 2019, 52(9): 176
谷美玲, 刘 昕, 张子月 等. 连续板带热镀锌及锌合金镀层的特点与展望 [J]. 材料保护, 2019, 52(9): 176
4 Shibli S M A, Meena B N, Remya R. A review on recent approaches in the field of hot dip zinc galvanizing process [J]. Surf. Coat. Technol., 2015, 262: 210
5 Yadav A P, Katayama H, Noda K, et al. Effect of Fe–Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments [J]. Corros. Sci., 2007, 49: 3716
6 Carpio J, Casado J A, Álvarez J A, et al. Stress corrosion cracking of structural steels immersed in hot-dip galvanizing baths [J]. Eng. Fail. Anal., 2010, 17: 19
7 Liu C S, Dong Z C, Wang R M, et al. Atmospheric corrosion and protection of power transmission steel tower components in industrial pollution area [J]. J. Hefei Univ. Technol. (Nat. Sci.), 2023, 46: 906
刘昌帅, 董泽才, 王若民 等. 工业污染区输电铁塔构件的大气腐蚀与防护 [J]. 合肥工业大学学报(自然科学版), 2023, 46: 906
8 Qiu N, Yao Q, Miao Y L, et al. Corrosion behavior of angle steel galvanized layer of power tower in NaCl solution [J]. Surf. Technol., 2011, 40(5): 5
邱 妮, 姚 强, 苗玉龙 等. 电力铁塔角钢镀锌层在NaCl介质中的腐蚀行为研究 [J]. 表面技术, 2011, 40(5): 5
9 Wang J, Ning P D, Liu Q Q, et al. Corrosion behavior of galvanized steel in a simulated marine atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 578
王 瑾, 宁培栋, 刘倩倩 等. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理 [J]. 中国腐蚀与防护学报, 2023, 43: 578
10 Qu Q, Yan C W, Wan Y, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc [J]. Corros. Sci., 2002, 44: 2789
11 Zhang R K, Cheng H H, Wu Y B, et al. Corrosion behavior of galvanized steel for power transmission tower in solutions with different concentrations of NaCl and NaHSO3 [J]. Corros. Sci. Prot. Technol., 2018, 30: 585
张仁坤, 程红红, 吴跃斌 等. 输电铁塔用镀锌钢在不同浓度NaCl和NaHSO3中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2018, 30: 585
doi: 10.11903/1002.6495.2017.305
12 Wu W Y. Corrosion simulation study of galvanized steel in salt spray environment [D]. Harbin: Harbin Institute of Technology, 2022
吴唯余. 镀锌钢在盐雾环境下的腐蚀模拟研究 [D]. 哈尔滨: 哈尔滨工业大学, 2022
13 Liu X. Research on the destruction caused by stress corrosion to the galvanized steel coating of electric power tower [D]. Ji’nan: Shandong University, 2015
刘 霄. 输电线杆塔镀锌钢镀层应力腐蚀破坏研究 [D]. 济南: 山东大学, 2015
14 Li R, Miao C Q, Wei T H. Experimental study on corrosion behaviour of galvanized steel wires under stress [J]. Corros. Eng. Sci. Technol., 2020, 55: 622
15 Yang W J, Yang P, Li X M, et al. Influence of tensile stress on corrosion behaviour of high-strength galvanized steel bridge wires in simulated acid rain [J]. Mater. Corros., 2012, 63: 401
16 Li J J. Effect of surface condition of steel on microstructure of hot-dip galvanized coating [D]. Tianjin: Hebei University of Technology, 2019
李娇娇. 钢基表面状态对热镀锌层组织的影响 [D]. 天津: 河北工业大学, 2019
17 Ploypech S, Boonyongmaneerat Y, Jearanaisilawong P. Crack initiation and propagation of galvanized coatings hot-dipped at 450°C under bending loads [J]. Surf. Coat. Technol., 2012, 206: 3758
18 Marder A R. The metallurgy of zinc-coated steel [J]. Prog. Mater. Sci., 2000, 45: 191
19 Zhao Q, Tang W M, Miao C H, et al. A stress corrosion clamping device with readable stress magnitude [P]. China Pat., 219015877U, 2023
赵 骞, 汤文明, 缪春辉 等. 一种应力大小可读的应力腐蚀夹持装置 [P]. 中国专利, 219015877U, 2023)
20 Zhao Y, Huang H J, Wang J, et al. The stress corrosion of wind power tower tube metal in atmospheric environment [J]. Environ. Technol., 2013, 31(1): 5
赵 钺, 黄海军, 王 俊 等. 大气环境下风电塔筒金属材料的应力腐蚀 [J]. 环境技术, 2013, 31(1): 5
21 Li L, Gu B S, Yang P Y, et al. Electrochemical study on corrosion behavior of hot dip galvanized zinc and zinc–aluminum alloy coatings in simulated marine atmospheric environment [J]. Electroplat. Finish., 2011, 30(3): 40
李 黎, 顾宝珊, 杨培燕 等. 热浸镀锌及锌铝合金镀层在模拟海洋大气环境中腐蚀行为的电化学研究 [J]. 电镀与涂饰, 2011, 30(3): 40
22 Hou R, Xu G, Dai F Q, et al. Effect of coating thickness on corrosion resistance of hot galvanized plate [J]. Mater. Prot., 2017, 50(6): 5
侯 蓉, 徐 光, 戴方钦 等. 镀层厚度对热镀锌热轧板耐蚀性的影响 [J]. 材料保护, 2017, 50(6): 5
23 Song Y L, Fu H D, Wang Z, et al. Stress corrosion cracking of magnesium alloys: mechanism, influencing factors, and prevention technology [J]. Mater. Rep., 2019, 33: 834
宋雨来, 付洪德, 王 震 等. 镁合金的应力腐蚀开裂: 机理、影响因素、防护技术 [J]. 材料导报, 2019, 33: 834
24 Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
25 Liu Y W, Wang Z Y, Wang J, et al. Corrosion behavior of hot-dip galvanized steel for power transmission tower in simulated acid rain atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 426
刘雨薇, 王振尧, 王 军 等. 输电塔杆用热浸镀锌钢在模拟酸雨大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2014, 34: 426
doi: 10.11902/1005.4537.2014.015
26 Zheng L Y. Electrochemical study of zinc and carbon steel galvanized layer on failure process in simulated atmospheric environment [D]. Hangzhou: Zhejiang University, 2011
郑利云. 锌及碳钢镀锌层在模拟大气环境中失效过程的电化学研究 [D]. 杭州: 浙江大学, 2011
27 Yuan X J, Zhang J X, Zhang S M, et al. Corrosion behavior of galvanized steel for power transmission tower with breakage of zinc coating in polluted environment [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 395
原徐杰, 张俊喜, 张世明 等. 镀锌层破损输电杆塔用镀锌钢在干湿交替作用下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2013, 33: 395
28 Lin X L. Study on localized corrosion behavior of galvanized coatings and passive films based on SECM [D]. Nanning: Guangxi University, 2022
林学亮. 基于SECM探究镀锌层及其钝化膜的微区腐蚀行为 [D]. 南宁: 广西大学, 2022
29 op't Hoog C, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route [J]. Adv. Eng. Mater., 2008, 10: 579
30 Sun Q L, Zhang L, Dong J, et al. Study on electrochemical behavior of prestressed reinforcement in simulated concrete solution [J]. Appl. Mech. Mater., 2013, 357-360: 917
31 Lu Y. The effect of tensile deformation on the stress corrosion behavior of AZ31 magnesium alloys [D]. Taiyuan: Taiyuan University of Technology, 2021
鲁 晔. 拉伸变形对AZ31镁合金应力腐蚀行为影响 [D]. 太原: 太原理工大学, 2021
32 Li M, Dong N N, Shang T, et al. Study on initial corrosion behavior of Zn-Al-Mg coating and pure zinc coating in typical atmospheric environment [J]. Surf. Technol., 2024, 53(2): 120
黎 敏, 董妮妮, 商 婷 等. 锌铝镁镀层和纯锌镀层在典型大气环境中初期腐蚀行为研究 [J]. 表面技术, 2024, 53(2): 120
33 Mattsson E. The atmospheric corrosion properties of some common structural metals: a comparative study [J]. Mater. Perform., 1982, 21: 9
34 Xiao L. Plastic deformation of hexagonal close-packed metals [J]. Rare Met. Mater. Eng., 1995, 24(6): 21
肖 林. 密排六方金属的塑性变形 [J]. 稀有金属材料与工程, 1995, 24(6): 21
35 Zhang J R, Wang Y C. Study on processes of superplastic deformation of Zn-4%Al alloy [J]. J. Harbin Inst. Technol., 1985, 17(suppl.3) : 1
张吉人, 王雨丛. Zn-4%Al合金超塑性变形微观过程的研究 [J]. 哈尔滨工业大学学报, 1985, 17(): 1
36 Luo B H, Zhou S C. The study of superplastic mechanism of Zn-Al eutectoid alloy [J]. Mater. Sci. Eng., 1995, 13(4): 22
罗兵辉, 周善初. Zn-Al共析合金室温超塑性变形机理 [J]. 材料科学与工程, 1995, 13(4): 22
[1] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[2] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[3] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[4] LIU Guangsheng, WANG Weijun, ZHOU Pei, TAN Jinhao, DING Hongxin, ZHANG Wei, XIANG Yong. Corrosion Behavior of Casing Steels 13Cr and N80 During Sequestration in an Impure Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[5] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[6] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[7] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[8] CEN Yuanyao, LIAO Guangmeng, ZHU Yuqin, ZHAO Fangchao, LIU Cong, HE Jianxin, ZHOU Kun. Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[9] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[10] YUAN Yu, XIANG Yong, LI Chen, ZHAO Xuehui, YAN Wei, YAO Erdong. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[11] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[12] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[13] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[14] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[15] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
No Suggested Reading articles found!