Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1295-1304    DOI: 10.11902/1005.4537.2023.392
Current Issue | Archive | Adv Search |
Influence of Laser Shock Peening on Microstructure and Oxidation Performance of Nickel-based Single Crystal Superalloy
LI Jiaheng1,2, QIAN Wei1,2, ZHU Jingjing1,2, CAI Jie1,2, HUA Yinqun1,2()
1 Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, China
2 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Cite this article: 

LI Jiaheng, QIAN Wei, ZHU Jingjing, CAI Jie, HUA Yinqun. Influence of Laser Shock Peening on Microstructure and Oxidation Performance of Nickel-based Single Crystal Superalloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1295-1304.

Download:  HTML  PDF(16397KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The impact of laser shock peening (LSP) on the microstructure and oxidation behavior of the nickel-based single crystal superalloy was investigated. The samples underwent LSP treatment, followed by oxidation for 10 and 150 h at 980oC. The microstructure, microhardness, and oxidation morphology of this alloy without and with LSP treatment were comparatively examined. Finally, the mechanism by which LSP affects the oxidation behavior of this alloy was elucidated. The result shows that after a single impact, the surface of the specimen manifested some grid-like dislocations distribution, alongside an increment in microhardness from an initial value of 420 HV to 495 HV. After three impacts, the dislocations on the surface appeared more uniformly distributed with evident entanglement, culminating in an elevation of surface microhardness to approximately 590 HV. Furthermore, the dislocations generated on the surface by LSP promoted the formation of diffusion pathways during the oxidation process, which facilitated the early formation of a continuous protective oxide scale. It decreased the formation of poor Al pits, which resulted from the development of a protective oxide scale in the subsequent stages of oxidation, thereby reducing the spalling of the oxide scale.

Key words:  laser shock peening      microstructural evolution      nickel-based single crystal superalloy      element diffusion      oxidation     
Received:  20 December 2023      32134.14.1005.4537.2023.392
ZTFLH:  TN249  
Fund: National Natural Science Foundation of China(51641102)
Corresponding Authors:  HUA Yinqun, E-mail: huayq@ujs.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.392     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1295

Fig.1  Schematic diagrams of LSP working principle (a) and shocking route (b)
Fig.2  TEM micrographs (a-c) and mapping results (a1-c1) of nickel-based single crystal superalloy treated by LSP under different conditions: (a, a1) UT, (b, b1) LSP-1, (c, c1) LSP-3
Fig.3  Changes of microhardness with depth for nickel-based single crystal superalloy samples untreated and treated by LSP
Fig.4  Loading-unloading curves (a) and surface nano-hardnesses and elastic moduli (b) of nickel-based single crystal superalloy without and with LSP treatments
Fig.5  Surface XRD patterns of nickel-based single crystal superalloy without and with LSP treatments
Fig.6  Surface XRD patterns of nickel-based single crystal superalloy oxidized at 980oC for 10 h (a) and 150 h (b)
Fig.7  Surface (a-c) and cross-sectional (a1-c1) morphologies of UT (a, a1), LSP-1 (b, b1) and LSP-3 (c, c1) nickel-based single crystal superalloy samples after 10 h oxidation at 980oC
PositionNiAlCrCoO
Point 135.445.092.83.5153.16
Point 244.142.43.15.5444.82
Point 340.520.502.516.2750.20
Table 1  Surface chemical compositions of UT, LSP-1 and LSP-3 nickel-based single crystal superalloy samples after 10 h oxidation
Fig.8  Surface (a-c, a1-c1) and cross-sectional (a2-c2) morphologies of UT (a, a1, a2), LSP-1 (b, b1, b2) and LSP-3 (c, c1, c2) nickel-based single crystal superalloy samples after 150 h oxidation at 980℃
PositionNiAlCrCoTaOW
Point 140.280.718.636.40.0343.80.15
Point 216.2125.797.715.720.0744.460.04
Point 365.54.379.3412.520.974.72.6
Point 444.510.220.946.450.0647.740.08
Point 546.100.310.704.680.0148.170.03
Table 2  Surface chemical compositions of UT, LSP-1 and LSP-3 nickel-based single crystal superalloy samples after 150 h oxidation
Fig.9  Evolutions of dislocations in nickel-based single crystal superalloy after LSP treatments: (a)UT, (b) LSP-1, (c) LSP-3
Fig.10  Schematic diagrams of oxidation mechanism of nickel-based single crystal superalloy untreated (a) and treated (b) by LSP
1 Du Y L, Yang Y H, Diao A M, et al. Effect of solution heat treatment on creep properties of a nickel-based single crystal superalloy [J]. J. Mater. Res. Technol., 2021, 15: 4702
2 Gudivada G, Pandey A K. Recent developments in nickel-based superalloys for gas turbine applications: review [J]. J. Alloy. Compd., 2023, 963: 171128
3 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
4 Yue Q Z, Liu L, Yang W C, et al. Research progress of creep behaviors in advanced Ni-based single crystal superalloys [J]. Mater. Rep., 2019, 33: 479
岳全召, 刘 林, 杨文超 等. 先进镍基单晶高温合金蠕变行为的研究进展 [J]. 材料导报, 2019, 33: 479
5 Sun X F, Jin T, Zhou Y Z, et al. Research progress of nickel-base single crystal superalloys [J]. Mater. China, 2012, 31(12): 1
孙晓峰, 金 涛, 周亦胄 等. 镍基单晶高温合金研究进展 [J]. 中国材料进展, 2012, 31(12): 1
6 Dąbek J, Prażuch J, Migdalska M, et al. The effect of various additions on the oxidation behavior of the γ/γ′ Ni-based alloy [J]. Oxid. Met., 2021, 96: 129
7 He D G, Lin Y C, Tang Y, et al. Influences of solution cooling on microstructures, mechanical properties and hot corrosion resistance of a nickel-based superalloy [J]. Mater. Sci. Eng., 2019, 746A: 372
8 Bensch M, Preußner J, Hüttner R, et al. Modelling and analysis of the oxidation influence on creep behaviour of thin-walled structures of the single-crystal nickel-base superalloy René N5 at 980oC [J]. Acta Mater., 2010, 58: 1607
9 Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects [J]. Int. Mater. Rev., 2013, 58: 315
10 AlMangour B, Yang J M. Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing [J]. Mater. Des., 2016, 110: 914
11 Sun W, Huo K, Dai F Z. Microstructure and property of IN718/WCP composite coating fabricated by electromagnetic compound field-assisted laser cladding [J]. J. Drain. Irrig. Mach. Eng., 2022, 40: 740
孙 伟, 霍 坤, 戴峰泽. 电磁辅助激光熔覆IN718/WCP复合涂层组织及性能 [J]. 排灌机械工程学报, 2022, 40: 740
12 Yang H, Huang X, Guo J S, et al. High temperature oxidation resistance of arc ion plating NiCoCrAlY coating modified via laser shock peening [J]. J. Alloy. Compd., 2022, 911: 164708
13 Deng W W, Wang C Y, Lu H F, et al. Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: a comprehensive review [J]. Int. J. Mach. Tools Manuf., 2023, 191: 104061
14 Niu J X, Dai F Z, Pei Z P, et al. Rolling contact fatigue performance of 316 stainless steel treated by laser shock processing [J]. J. Drain. Irrig. Mach. Eng., 2022, 40: 97
牛建新, 戴峰泽, 裴智鹏 等. 激光冲击强化316不锈钢的滚动接触疲劳性能 [J]. 排灌机械工程学报, 2022, 40: 97
15 Geng Y X, Dong X, Wang K D, et al. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure [J]. Opt. Laser Technol., 2020, 123: 105917
16 Montross C S, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review [J]. Int. J. Fatigue, 2002, 24: 1021
17 Lu G X, Liu J D, Qiao H C, et al. Crack appearance of a laser shock-treated single crystal nickel-base superalloy after isothermal fatigue failure [J]. Surf. Coat. Technol., 2017, 321: 74
18 Chen S L, Zhou J Z, Huang S, et al. Mechanism of hot corrosion resistance of IN718 superalloy strengthened by laser peening [J]. J. Drain. Irrig. Mach. Eng., 2021, 39: 1068
陈松玲, 周建忠, 黄 舒 等. 激光喷丸强化IN718高温合金抗热腐蚀机理 [J]. 排灌机械工程学报, 2021, 39: 1068
19 Cao J D, Zhang J S, Hua Y Q, et al. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing [J]. Mater. Charact., 2017, 125: 67
20 Cao J D, Zhang J S, Hua Y Q, et al. Improving the high temperature oxidation resistance of Ni-based superalloy GH202 induced by laser shock processing [J]. J. Mater. Process. Technol., 2017, 243: 31
21 Hu X L, Qiao H C, Zhao J B, et al. Effect of laser shock wave on thermal corrosion resistance of single crystal alloy [J]. Acta Aeronaut. Astronaut. Sin., 2022, 43: 525591
胡宪亮, 乔红超, 赵吉宾 等. 激光冲击波对单晶合金抗热腐蚀性能的影响 [J]. 航空学报, 2022, 43: 525591
doi: 10.7527/S1000-6893.2021.25591
22 Geng Y X, Mo Y, Zheng H Z, et al. Effect of laser shock peening on the hot corrosion behavior of Ni-based single-crystal superalloy at 750oC [J]. Corros. Sci., 2021, 185: 109419
23 Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry [J]. J. Appl. Phys., 1990, 68: 775
24 Tang Z H, Dong X, Geng Y X, et al. The effect of warm laser shock peening on the thermal stability of compressive residual stress and the hot corrosion resistance of Ni-based single-crystal superalloy [J]. Opt. Laser Technol., 2022, 146: 107556
25 Sun R J, Li L H, Zhu Y, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening [J]. J. Alloy. Compd., 2018, 747: 255
26 Srinivasan S, Garcia D B, Gean M C, et al. Fretting fatigue of laser shock peened Ti-6Al-4V [J]. Tribol. Int., 2009, 42: 1324
27 Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing [J]. J. Laser Appl., 1998, 10: 265
28 Zhang H P, Cai Z Y, Wan Z D, et al. Microstructure and mechanical properties of laser shock peened 38CrSi steel [J]. Mater. Sci. Eng., 2020, 788A: 139486
29 Liu Y, Yu J J, Xu Y, et al. High cycle fatigue behavior of a single crystal superalloy at elevated temperatures [J]. Mater. Sci. Eng., 2007, 454A-455A: 357
30 He C, Liu L, Huang T W, et al. Dislocations in Ni-based single crystal superalloys and their influence on creep behavior [J]. Mater. Rep., 2019, 33: 2918
何 闯, 刘 林, 黄太文 等. 镍基单晶高温合金中的位错及其对蠕变行为的影响 [J]. 材料导报, 2019, 33: 2918
31 Hu Y B, Cheng C Q, Zhang L, et al. Microstructural evolution of oxidation film on a single crystal nickel-based superalloy at 980 °C [J]. Oxid. Met., 2018, 89: 303
32 Chapovaloff J, Rouillard F, Wolski K, et al. Kinetics and mechanism of reaction between water vapor, carbon monoxide and a chromia-forming nickel base alloy [J]. Corros. Sci., 2013, 69: 31
33 Pei H Q, Wen Z X, Zhang Y M, et al. Oxidation behavior and mechanism of a Ni-based single crystal superalloy with single α-Al2O3 film at 1000oC [J]. Appl. Surf. Sci., 2017, 411: 124
34 Jiang H, Dong J X, Zhang M C, et al. Oxidation behavior and mechanism of Inconel 740H alloy for advanced ultra-supercritical power plants between 1050 and 1170oC [J]. Oxid. Met., 2015, 84: 61
35 Pfennig A, Fedelich B. Oxidation of single crystal PWA 1483 at 950oC in flowing air [J]. Corros. Sci., 2008, 50: 2484
36 Liu C T, Sun X F, Guan H R, et al. Oxidation of the single-crystal Ni-base superalloy DD32 containing rhenium in air at 900 and 1000oC [J]. Surf. Coat. Technol., 2005, 197: 39
37 Campbell C E, Boettinger W J, Kattner U R. Development of a diffusion mobility database for Ni-base superalloys [J]. Acta Mater., 2002, 50: 775
38 Zhu Y W. Effect of surface treatment condition on oxidation behavior of DD6 Ni-based single crystal superalloy [D]. Dalian: Dalian University of Technology, 2018
朱亚威. 表面处理状态对DD6镍基单晶合金氧化行为的影响 [D]. 大连: 大连理工大学, 2018
39 Chen L, Zhang X Z, Gan S Y. Microstructure and hot corrosion of GH2036 alloy treated by laser shock peening [J]. JOM, 2020, 72: 754
doi: 10.1007/s11837-019-03857-2
40 Li N, Wang Q, Niu W J, et al. Effects of multiple laser shock peening impacts on microstructure and wear performance of wire-based laser directed energy deposition 17-4PH stainless steel [J]. J. Mater. Res. Technol., 2023, 25: 3222
41 Huntz A M, Balmain J, Tsaï S C, et al. Diffusion studies in oxides scales grown on alumina-and chromia-forming alloys [J]. Scr. Mater., 1997, 37: 651
42 Stechauner G, Kozeschnik E. Self-diffusion in grain boundaries and dislocation pipes in Al, Fe, and Ni and application to AlN precipitation in steel [J]. J. Mater. Eng. Perform., 2014, 23: 1576
43 Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
[1] LI Kaiyang, ZHAI Yunlong, HU Xinyu, WU Hong, LIU Bin, XING Shaohua, HOU Jian, ZHANG Fan, ZHANG Naiqiang. Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[2] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[3] WU Ming, REN Yanjie, MA Zhuochun, ZHANG Sitian, CHEN Jian, NIU Yan. High Temperature Oxidation Behavior of F55 Super Duplex Stainless Steel at 800-1000oC in 1.013×105 Pa O2[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[4] GAO Junxuan, CAO Han, KUANG Wenjun, ZHENG Quan, ZHANG Peng, ZHONG Weihua. Research Progress on Irradiation Assisted Stress Corrosion Cracking Behavior and Mechanism of Austenitic Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 835-846.
[5] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[6] ZHANG Bangyan, WU Hongbin, HU Xuegang, DONG Jiajian, ZHENG Shijie, YIN Weiwei, ZHANG Fangyu, TIAN Lixi, LIU Guangming. High Temperature Oxidation Behavior of FeCrAl/La2Zr2O7 Composites Prepared by Mechanical Alloying and Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[7] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[8] LAI Tian, XIE Dongbai, DUO Shuwang, HONG Hao, ZHANG Hao, TANG Zhijie. Initial Oxidation Behavior of Pure Iron in a Simulated Combustion Environment Containing Gasoline[J]. 中国腐蚀与防护学报, 2024, 44(2): 445-452.
[9] WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[10] LIANG Zhiyuan, ZHANG Chao, QU Jinyu, HE Jianyuan, GUO Tingshan, XU Yiming. Oxidation Behavior in Air-steam Mixed Atmosphere at 1000oC of Four Typical High-temperature Alloys for Gas Turbine[J]. 中国腐蚀与防护学报, 2024, 44(2): 355-364.
[11] FENG Kangkang, REN Yanjie, LV Yunlei, ZHOU Mengni, CHEN Jian, NIU Yan. Effect of Si Content on Oxidation Behavior of Quaternary Fe-20Ni-20Cr- ySi Alloys in Oxygen at 900oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[12] WANG Shuang, WANG Zixing, CHENG Xiaonong, LUO Rui. Effect of Rare Earth La on High Temperature Oxidation of Cobalt-based Superalloy GH5188 at 1100oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[13] YUAN Xiaohu, LI Dingjun, WANG Tianjian, GUO Xianping, ZHANG Naiqiang, ZHU Zhongliang. Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[14] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[15] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
No Suggested Reading articles found!