Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 246-254    DOI: 10.11902/1005.4537.2023.073
Current Issue | Archive | Adv Search |
Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating
JIANG Guangrui1,2(), LIU Guanghui1, SHANG Ting1
1.Shougang Group Co., Ltd., Technology Research Institute, Beijing 100043, China
2.Beijing Key Laboratory of Green Recyclable Process for Iron & steel Production Technology, Beijing 100043, China
Cite this article: 

JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 246-254.

Download:  HTML  PDF(10134KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

ZnAlMg coated steel plates, as the substrate for anti-corrosion and decorative coatings, have to experience thermally baking in automobile manufacturing processes, which may affect the microstructure and corrosion resistance of the coating, but such effect was not studied yet. In this study, the ZnAlMg coated steel plates were heat treated at temperatures in the range of 150oC to 250oC for 10 min respectively so that to reproduce the baking effect. Then the variation of surface- and cross sectional-microstructure, phase constituents and corrosion behavior of the ZnAlMg coating before and after heating were assessed by means of scanning electron microscope (SEM), and X-ray diffractometer (XRD), as well as electrochemical technology and neutral salt spray test. The results show that with the increasing heating temperature, the eutectic structure in the ZnAlMg coating gradually coarsens, and oxides rich in aluminum and magnesium are formed on the surface of the coating. When heating at 175oC, a large number of oxygen is detected on the eutectic structure and surface of the coating. When heating at 250oC, the surface of the initial solidification structure of the coating becomes rough, while the gray phase in the eutectic structure gradually evolves from lamellar structure to granular structure, and a large number of oxidation products of Al, Mg and Zn appear on the surface, among which the oxides of Mg and Al are the main ones. The electrochemical test results show that with the increasing heating temperature, the polarization resistance and charge transfer resistance of the ZnAlMg coating increase but the corrosion current density decreases continuously. The results of neutral salt spray test show that the corrosion mass loss of the ZnAlMg coating decreases gradually with the increasing heating temperature. Compared with the as received ones, the corrosion mass loss of the ZnAlMg coating heat treated at 250oC decreased by 17%. It was indicated that the improvement of corrosion resistance of the ZnAlMg coating may be related to the coarsening of eutectic structure and the formation of oxides rich in Al and Mg on the surface.

Key words:  ZnAlMg coating      heat treatment      oxidation      corrosion      microstructure     
Received:  20 March 2023      32134.14.1005.4537.2023.073
ZTFLH:  TG335.22  
Corresponding Authors:  JIANG Guangrui, E-mail: guangrui82@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.073     OR     https://www.jcscp.org/EN/Y2024/V44/I1/246

Fig.1  Surface microstructure of ZnAlMg coating under different heat treatment temperatures: (a) as-received, (b) 150oC, (c) 175oC, (d) 200oC, (e) 225oC, (f) 250oC
Fig.2  Local surface microstructure of ZnAlMg coating: (a) as-received, (b) 250oC
Fig.3  Cross sectional microstructure of ZnAlMg coating under different heat treatment temperatures: (a) as-received, (b)150oC, (c) 175oC, (d) 200oC, (e) 225oC, (f) 250oC
Fig.4  Cross sectional microstructure and element distribution of ZnAlMg coating under different heat treatment temperatures: (a) as-received, (b) 175oC, (c) 250oC
Fig.5  XRD patterns of as-received ZnAlMg coating sample and 200oC heat treatment sample
Fig.6  Open circuit potentials of ZnAlMg coating under different heat treatment temperatures
Fig.7  Polarization curves of ZnAlMg coating under different heat treatment temperatures
SampleIcorr / μA·cm-2Rp / Ω·cm2
As-received236982
150℃215757
175℃1211912
200℃620934
225℃527637
250℃635357
Table 1  Corrosion current density and polarization resistance of ZnAlMg coating under different heat treatment temperatures
Fig.8  Phase angle (a), impedance module (b) plots and impedance module at 0.1 Hz (c) of ZnAlMg coating under different heat treatment temperatures
Fig.9  Nyquist plots (a) and equivalent circuits (b) of ZnAlMg coating under different heat treatment temperatures
SampleRs / Ω·cm2Qdl, YQdl, nRt / Ω·cm2C1 / μF·cm-2R1 / Ω·cm2YW
As-received31.08.27 × 10-60.752641678910.0067
150oC39.18.74 × 10-60.843456190899-
175oC30.79.04 × 10-60.854276219512-
200oC30.18.37 × 10-60.8376962901040-
225oC28.01.20 × 10-50.648530567242
250oC25.71.91 × 10-50.70105701597806-
Table 2  Fitted parameters for the equivalent circuit
Fig.10  Mass loss of ZnAlMg coating by different heat treatment after 14 d neutral salt spray test
1 Komatsu A, Izutani H, Tsujimura T, et al. Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheet under accelerated corrosion environment [J]. Tetsu-to-Hagane, 2000, 86: 534
小松厚志, 泉谷秀房, 辻村太佳夫 等. 溶融Zn-Al-Mg系合金めっき鋼板の促進腐食環境下における耐食性と防食機構 [J]. 鉄と鋼, 2000, 86: 534
2 Nishimura K, Shindo H, Okada T, et al. Development and properties of Zn-Mg galvanized steel sheet “DYMAZINC” [J]. Mat. Japan, 2001, 40: 292
西村一実, 新頭英俊, 岡田哲也 等. 高耐食性Zn-Mg合金めっき鋼板「ダイマジンク」の開発と製品特性 [J]. まてりあ, 2001, 40: 292
3 Morimoto Y, Honda K, Nishimura K, et al. Excellent corrosion-resistant Zn-Al-Mg-Si alloy hot-dip galvanized steel sheet “SUPER DYMA” [J]. Nippon Steel Tech. Rep., 2003, (87): 24
4 Sohn I R, Kim T C, Ju G I, et al. Anti-corrosion performance and applications of PosMAC® steel [J]. Corros. Sci. Technol., 2021, 20: 7
5 Schouller-Guineta P, Allelyb C, Volovitchc P. Zn-Al-Mg: An innovative metallic coating that offers protection in the harshest environments [A]. Proceedings of the 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C]. Milano: the Associazione Italiana Di Metallurgia, 2011
6 Jiang G R, Zheng X B, Zhao X F, et al. Application of the hot-dip galvanized Zn-Al-Mg alloyed coating steel sheet on automobile body [J]. Automob. Technol. Mater., 2021, (4): 12
蒋光锐, 郑学斌, 赵晓非 等. 汽车车身用热浸镀锌铝镁镀层钢板 [J]. 汽车工艺与材料, 2021, (4): 12
7 Xie Y X, Jin X Y, Wang L. Development and application of hot-dip galvanized zinc-aluminum-magnesium coating [J]. J. Iron Steel Res., 2017, 29: 167
谢英秀, 金鑫焱, 王 利. 热浸镀锌铝镁镀层开发及应用进展 [J]. 钢铁研究学报, 2017, 29: 167
8 Jiang G R, Wang H Q, Li M, et al. Corrosion properties of steel sheet with zinc-base alloyed coatings [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 354
蒋光锐, 王海全, 黎 敏 等. 锌基合金镀层钢板的耐蚀性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 354
doi: 10.11902/1005.4537.2016.101
9 Volovitch P, Vu T N, Allély C, et al. Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel [J]. Corros. Sci., 2011, 53: 2437
doi: 10.1016/j.corsci.2011.03.016
10 LeBozec N, Thierry D, Rohwerder M, et al. Advanced Zinc-Based Hot Dip Coatings for the Automotive Application (AUTOCOAT) [M]. LU: Publications Office, 2013
11 Schul J, Schüßler A, Parma G, et al. New potentials for Zn-Mg-Al hot-dip galvanized coatings in automotive applications [A]. Proceedings of the 11th International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C]. Tokyo: The Iron and Steel Institute of Japan, 2017: 733
12 Gu H. Study of coatings compatibility with zinc-magnesium steel [J]. Paint Coat. Ind., 2019, 49(4): 65
顾 宏. 锌镁涂层新型热镀锌钢板与涂料的匹配研究 [J]. 涂料工业, 2019, 49(4): 65
13 Chen L, Xing Y, Yu Y, et al. Corrosion behaviors of different steel sheets in salt spray tests [J]. Electroplat. Finish., 2020, 39: 1528
陈 磊, 邢 阳, 俞 雁 等. 不同钢板在盐雾试验中的腐蚀行为 [J]. 电镀与涂饰, 2020, 39: 1528
14 Schinkinger B, Zügner S. Zinc magnesium 70 - Implementation of a new metallic coating within the BMW group [A]. Proceedings of the 4th International Conference on Steels in Cars and Trucks [C]. Braunschweig: Steel Institute VDEh, 2014: 524
15 Sigvant M, Pilthammar J, Hol J, et al. Friction in sheet metal forming simulations: Modelling of new sheet metal coatings and lubricants [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 418: 012093
16 Tian F. Stamping analysis based on Zn-Al-Mg and Zn-Fe coatings [J]. Forg. Metalform., 2020, (16): 38
田 飞. 基于锌铝镁和锌铁镀层的冲压成形分析 [J]. 锻造与冲压, 2020, (16): 38
17 Hu Y Z, Zhang Y, Li Z H. Application research on body outer cover panel with zinc-magnesium coated steel sheet [J]. Die Mould Ind., 2020, 46(4): 64
胡彦昭, 张 宇, 李振华. 锌镁涂层钢板车身外覆盖件的应用研究 [J]. 模具工业, 2020, 46(4): 64
18 Yang Z, Ma F X, Sun H, et al. Evaluation on anticorrosion and paintability of Zn-Al-Mg alloy coated steel sheet [J]. Electroplat. Finish., 2021, 40: 1393
杨 忠, 马风雪, 孙 浩 等. 锌铝镁钢板的防腐及涂装性评价 [J]. 电镀与涂饰, 2021, 40: 1393
19 Zeng F B, Qin Y R, Tian C W, et al. Performance test analysis of Zn-Al-Mg automobile sheet material [A]. SAECCE2021 [C]. Shanghai: China Machine Press, 2021: 2539
曾凡波, 秦永瑞, 田成伟 等. Zn-Al-Mg汽车板材料的性能试验分析 [A]. 2021中国汽车工程学会年会论文集 [C]. 上海: 机械工业出版社, 2021: 2539
20 Pan J M. 1000 Questions about Painting Technology [M]. Beijing: Machinery Industry Press, 2013: 315
潘继民. 涂装技术1000问 [M]. 北京: 机械工业出版社, 2013: 315
21 De Bruycker E, Zermout Z, De Cooman B C. Zn-Al-Mg coatings: Thermodynamic analysis and microstructure related properties [J]. Mater. Sci. Forum, 2007, 539-543: 1276
doi: 10.4028/www.scientific.net/MSF.539-543
22 Nogueira T M C, Cruz M A S, Rios P R. Influence of an annealing heat treatment on the microstructure, ductility, and corrosion resistance of a chromated 55wt.% Al-Zn coated steel sheet [J]. J. Mater. Eng. Perform., 2001, 10: 314
doi: 10.1361/105994901770345024
23 Wang Y F, Ma D G, Li J Y, et al. Effect of heating system on structure and corrosion resistance of zinc-aluminium-magnesium coating [J]. Hebei Metall., 2021, (8): 28
王言峰, 马德刚, 李建英 等. 加热制度对锌铝镁镀层结构及耐蚀性的影响 [J]. 河北冶金, 2021, (8): 28
24 Ghatei-Kalashami A, Khan M S, Lee M Y, et al. High-temperature phase evolution of the ZnAlMg coating and its effect on mitigating liquid-metal-embrittlement cracking [J]. Acta Mater., 2022, 229: 117836
doi: 10.1016/j.actamat.2022.117836
25 Riener C K, Raab A E, Luckeneder G, et al. Zinc-magnesium-aluminium (ZM)-HDG-coated steel sheet for structural parts to outer panels [R]. Detroit: SAE International, 2017
26 Meng Y, Jiang G R, Ju X H, et al. TEM study on the microstructure of the Zn-Al-Mg alloy [J]. Mater. Charact., 2017, 129: 336
doi: 10.1016/j.matchar.2017.05.011
27 Gaskell D R, Laughlin D E. Introduction to the Thermodynamics of Materials [M]. 6th ed. Boca Raton: CRC Press, 2018: 467
28 Gesmundo F, Gleeson B. Oxidation of multicomponent two-phase alloys [J]. Oxid. Met., 1995, 44: 211
doi: 10.1007/BF01046728
29 Gesmundo F, Viani F, Niu Y. The internal oxidation of two-phase binary alloys under low oxidant pressures [J]. Oxid. Met., 1996, 45: 51
doi: 10.1007/BF01046820
30 Chang J K, Lin C S. Microstructural evolution of 11Al-3Mg-Zn ternary alloy-coated steels during austenitization heat treatment [J]. Metall. Mater. Trans., 2017, 48A: 3734
31 Ahmadi M, Salgın B, Kooi B J, et al. The effect of grain refinement on the deformation and cracking resistance in Zn-Al-Mg coatings [J]. Mater. Sci. Eng., 2022, 840A: 142995
32 Paladino A E, Coble R L. Effect of grain boundaries on diffusion-controlled processes in aluminum oxide [J]. J. Am. Ceram. Soc., 1963, 46: 133
doi: 10.1111/jace.1963.46.issue-3
33 Svensson H, Knutsson P, Stiller K. Formation and healing of voids at the metal-oxide interface in NiAl alloys [J]. Oxid. Met., 2009, 71: 143
doi: 10.1007/s11085-008-9132-z
34 Wood G C, Stott F H. Oxidation of alloys [J]. Mater. Sci. Technol., 1987, 3: 519
doi: 10.1080/02670836.1987.11782263
35 LeBozec N, Thierry D, Persson D, et al. Influence of microstructure of zinc-aluminium-magnesium alloy coated steel on the corrosion behavior in outdoor marine atmosphere [J]. Surf. Coat. Technol., 2019, 374: 897
doi: 10.1016/j.surfcoat.2019.06.052
36 Prosek T, Persson D, Stoulil J, et al. Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions [J]. Corros. Sci., 2014, 86: 231
doi: 10.1016/j.corsci.2014.05.016
37 El-Sayed A R, Mohran H S, Abd El-Lateef H M. Corrosion study of zinc, nickel, and zinc-nickel alloys in alkaline solutions by tafel plot and impedance techniques [J]. Metall. Mater. Trans., 2012, 43A: 619
[1] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[3] YUAN Yu, XIANG Yong, LI Chen, ZHAO Xuehui, YAN Wei, YAO Erdong. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[4] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[5] YUAN Xiaohu, LI Dingjun, WANG Tianjian, GUO Xianping, ZHANG Naiqiang, ZHU Zhongliang. Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[6] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[7] LIU Jingyuan, ZANG Qing'an, SUN Changjun, ZHANG Cuiqing, LI Xiaofeng. Research Progress on Corrosion and Protection of Water System for Coal Gasification[J]. 中国腐蚀与防护学报, 2024, 44(1): 27-37.
[8] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[9] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[10] MA Yan, LAN Yuning, CHEN Jiawei. A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion[J]. 中国腐蚀与防护学报, 2024, 44(1): 261-266.
[11] BIAN Yafei, TANG Wenming, ZHANG Jie, MAO Ruirui, MIAO Chunhui, CHEN Guohong. Soil Corrosion Characteristics of Q235 Steel Grounding Material Used in Power Grid in Anhui Province[J]. 中国腐蚀与防护学报, 2024, 44(1): 130-140.
[12] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[13] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[14] LENG Wenjun, SHI Xizhao, XIN Yonglei, YANG Yange, WANG Li, CUI Zhongyu, HOU Jian. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[15] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
No Suggested Reading articles found!