Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 255-260    DOI: 10.11902/1005.4537.2023.025
Current Issue | Archive | Adv Search |
Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy
XIE Yun1, LIU Ting1, WANG Wen1, ZHOU Jialin1, TANG Song2()
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Cite this article: 

XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 255-260.

Download:  HTML  PDF(6269KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-15Li-6Al alloy was prepared by vacuum induction melting and then the alloy was subjected to solution treatment plus air cooling or water cooling respectively. The phase constitution and microstructure of the alloys (as-cast, solution treatment plus air cooling or water cooling), were analyzed by means of X-ray diffraction analysis (XRD) and scanning electron microscope (SEM). In addition, the corrosion behavior of the three alloys was studied by gravimetric and electrochemical tests. The results show that the three-state alloys are all mainly composed of β-Li with a little of second phase AlLi, and the fractions of secondary AlLi precipitates in the alloys decrease in the following order: as-cast, solution treatment + air cooling and solution treatment + water cooling. The alloy after solution treatment plus water cooling is almost composed of single β-Li phase. On the contrary, the corrosion resistance of the three alloys follows the sequence: as-cast < solution treatment + air cooling < solution treatment + water cooling. Relative to the as-cast alloy, the free corrosion potential increases by 480 mV and the corrosion current density decreases by three orders of magnitude for the alloy solution subjected to solution treatment plus water cooling. The solution treatment makes more Al to dissolve back into β-Li, and subsequent fast cooling strongly suppresses the precipitation of AlLi. Therefore, the number of micro galvanic couple of AlLi and β-Li decreases, resulting in marked improvement of corrosion resistance.

Key words:  Mg-Li alloys      heat treatment      corrosion resistance      microstructure     
Received:  08 February 2023      32134.14.1005.4537.2023.025
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52101142);Natural Science Foundation of Jiangsu Province(BK20200503);Jiangxi Provincial Natural Science Foundation(20224BAB214018)
Corresponding Authors:  TANG Song, E-mail: stang12s@alum.imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.025     OR     https://www.jcscp.org/EN/Y2024/V44/I1/255

Fig.1  XRD patterns of different state LA156 alloys
Fig.2  Microstructures of different state LA156 alloys: (a) as-cast, (b) air cooling, (c) water cooling
Fig.3  Macroscopic morphologies of different state LA156 alloys before (a-c) and after (d-f) 40 h immersion in 3.5%NaCl solution: (a, d) as-cast, (b, e) air cooling, (c, f) water cooling
Fig.4  Localized morphologies of different state LA156 alloys after 40 h immersion in 3.5%NaCl solution: (a) as-cast, (b) air cooling, (c) water cooling
Fig.5  Corrosion rates of different state LA156 alloys in 3.5%NaCl solution
Fig.6  XRD patterns of different state LA156 alloys after 40 h immersion in 3.5%NaCl solution
Fig.7  Polarization curves of different state LA156 alloys in 3.5%NaCl solution
Sample stateEcorr (vs. SCE) /VIcorr / A·cm-2
As-cast-1.570.90 × 10-3
Air cooling-1.461.50 × 10-4
Water cooling-1.091.48 × 10-6
Table 1  Extrapolated data of polarization curves
Fig.8  Comparison of density and corrosion current density of water cooling LA156 with pure Mg and some Mg(-Li) alloys
1 Peng X, Liu W C, Wu G H. Alloying and application of Mg-Li alloys: a review [J]. Chin. J. Nonferrous Met., 2021, 31: 3024
doi: 10.1016/S1003-6326(21)65712-6
彭 翔, 刘文才, 吴国华. 镁锂合金的合金化及其应用 [J]. 中国有色金属学报, 2021, 31: 3024
2 Tian G Y, Yan C M, Yang Z H, et al. Wang J S. Research progress on corrosion and protection of corrosion-resistant Mg-Li alloys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1255
田光元, 严程铭, 杨智皓 等. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1255
doi: 10.11902/1005.4537.2022.300
3 Ma C J, Zhang D, Qin J N, et al. Aging behavior of Mg-Li-Al alloys [J]. Trans. Nonferrous Met. Soc. China, 1999, 9: 772
4 Li C Q, Xu D K, Wang B J, et al. Natural ageing responses of duplex structured Mg-Li based alloys [J]. Sci. Rep., 2017, 7: 40078
doi: 10.1038/srep40078 pmid: 28053318
5 Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435 pmid: 26480229
6 Yang Y, Peng X D, Wen H M, et al. Microstructure and mechanical behavior of Mg-10Li-3Al-2.5Sr alloy [J]. Mater. Sci. Eng., 2014, 611A: 1
7 Kang Z X, Lin K, Zhang J Y. Characterisation of Mg-Li alloy processed by solution treatment and large strain rolling [J]. Mater. Sci. Technol., 2016, 32: 498
doi: 10.1179/1743284715Y.0000000119
8 Xin T Z, Tang S, Ji F, et al. Phase transformations in an ultralight BCC Mg alloy during anisothermal ageing [J]. Acta Mater., 2022, 239: 118248
doi: 10.1016/j.actamat.2022.118248
9 Zhang Q F, Song L, Wang J, et al. Mechanical properties and corrosion behavior of an extruded dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 428
张全福, 宋 蕾, 王 建 等. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 428
doi: 10.11902/1005.4537.2022.084
10 Tian H Y, Dou Z, Jin Y J, et al. Research on the preparation and corrosion resistance of the low energy plasma electrolysis oxide coating of magnesium lithium alloy [J]. Surf. Technol., 2021, 50(6): 77
田昊阅, 窦 铮, 金雨佳 等. 镁锂合金低能耗等离子电解氧化膜层的制备与耐蚀性研究 [J]. 表面技术, 2021, 50(6): 77
11 Cao Y X, Wang M J, Zhou F, et al. Effect of KOH concentration on the growth process and corrosion resistance of micro-arc oxidation (MAO) coatings on LA103Z Mg-Li alloy [J]. Surf. Technol., 2021, 50(3): 348
曹雅心, 王梦杰, 周 凡 等. KOH浓度对LA103Z镁锂合金微弧氧化成膜过程及膜层耐蚀性的影响 [J]. 表面技术, 2021, 50(3): 348
12 Wang B J, Jiang C L, Li C Q, et al. Research progress on corrosion behavior of magnesium-lithium alloys [J]. J. Aeronaut. Mater., 2019, 39(1): 1
王保杰, 姜春龙, 李传强 等. 镁锂合金腐蚀行为研究进展 [J]. 航空材料学报, 2019, 39(1): 1
13 Song Y W, Shan D Y, Chen R S, et al. Corrosion characterization of Mg-8Li alloy in NaCl solution [J]. Corros. Sci., 2009, 51: 1087
14 Li C Q, Tong Z P, He Y B, et al. Comparison on corrosion resistance and surface film of pure Mg and Mg-14Li alloy [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2413
doi: 10.1016/S1003-6326(20)65388-2
15 Zeng Z R, Zhou M R, Esmaily M, et al. Corrosion resistant and high-strength dual-phase Mg-Li-Al-Zn alloy by friction stir processing [J]. Commun. Mater., 2022, 3: 18
16 Gu M, Wei G, Zhao J, et al. Influence of yttrium addition on the corrosion behaviour of as-cast Mg-8Li-3Al-2Zn alloy [J]. Mater. Sci. Technol., 2017, 33: 864
17 Morishige T, Obata Y, Goto T, et al. Effect of Al composition on the corrosion resistance of Mg-14 mass% Li system alloy [J]. Mater. Trans., 2016, 57: 1853
doi: 10.2320/matertrans.M2016247
18 Tang S, Xin T Z, Xu W Q, et al. Precipitation strengthening in an ultralight magnesium alloy [J]. Nat. Commun., 2019, 10: 1003
doi: 10.1038/s41467-019-08954-z pmid: 30824695
19 Xin T Z, Zhao Y H, Mahjoub R, et al. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition [J]. Sci. Adv., 2021, 7: eabf3039
doi: 10.1126/sciadv.abf3039
20 Peng X, Wu G H, Liu W C, et al. Corrosion mechanism and surface protection of Mg-Li alloy [J]. Chin. J. Nonferrous Met., 2022, 32: 1
doi: 10.1016/S1003-6326(21)65776-X
彭 翔, 吴国华, 刘文才 等. Mg-Li合金的腐蚀机理与表面防护 [J]. 中国有色金属学报, 2022, 32: 1
21 Sun Q, Tian H, Li Z Z, et al. Solubility of CO2 in water and NaCl solution in equilibrium with hydrate. Part I: experimental measurement [J]. Fluid Phase Equilib., 2016, 409: 131
doi: 10.1016/j.fluid.2015.09.033
22 Huang X M, Zhang C H, Zhang M L. Corrosion behavior of pure Mg and Mg-Li alloy in 3.5%NaCl of pH = 7 [J]. J. Aeronaut. Mater., 2008, 28(3): 71
黄晓梅, 张春红, 张密林. 纯镁和镁锂合金在中性 3.5%NaCl溶液中的腐蚀行为 [J]. 航空材料学报, 2008, 28(3): 71
23 Zhou M, Liu C M, Gao Y H, et al. Corrosion behavior of Cu-containing AZ31 magnesium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 18
周 苗, 刘楚明, 高永浩 等. 含铜AZ31镁合金的腐蚀行为 [J]. 中国有色金属学报, 2019, 29: 18
24 Fu X Y, Jia R L, Zhang G L, et al. Effects of rare earths on corrosion behavior of AZ91 Mg alloy [J]. Chin. J. Nonferrous Met., 2021, 31: 1798
付晓雨, 贾瑞灵, 张贵龙 等. 稀土对AZ91镁合金腐蚀行为的影响 [J]. 中国有色金属学报, 2021, 31: 1798
25 Liu X Q, Wang X J, Guo E Y, et al. Influence of deformation on the corrosion behavior of LZ91 Mg-Li alloy [J]. Int. J. Miner. Metall. Mater., 2023, 30: 72
doi: 10.1007/s12613-022-2466-8
26 Meng T Y, Zhang T, Li Y, et al. Corrosion behavior of Mg-Al and Mg-Li alloy sheet in NaCl solution [J]. J. Univ. Sci. Technol. Liaoning, 2016, 39: 446
孟天宇, 张 涛, 李 月 等. Mg-Al和Mg-Li镁合金板在NaCl水溶液中的腐蚀行为 [J]. 辽宁科技大学学报, 2016, 39: 446
[1] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[3] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[4] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[5] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[6] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[7] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[8] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[9] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[10] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[11] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[12] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[13] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[14] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[15] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
No Suggested Reading articles found!