|
|
Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy |
XIE Yun1, LIU Ting1, WANG Wen1, ZHOU Jialin1, TANG Song2( ) |
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 2.School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China |
|
Cite this article:
XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 255-260.
|
Abstract Mg-15Li-6Al alloy was prepared by vacuum induction melting and then the alloy was subjected to solution treatment plus air cooling or water cooling respectively. The phase constitution and microstructure of the alloys (as-cast, solution treatment plus air cooling or water cooling), were analyzed by means of X-ray diffraction analysis (XRD) and scanning electron microscope (SEM). In addition, the corrosion behavior of the three alloys was studied by gravimetric and electrochemical tests. The results show that the three-state alloys are all mainly composed of β-Li with a little of second phase AlLi, and the fractions of secondary AlLi precipitates in the alloys decrease in the following order: as-cast, solution treatment + air cooling and solution treatment + water cooling. The alloy after solution treatment plus water cooling is almost composed of single β-Li phase. On the contrary, the corrosion resistance of the three alloys follows the sequence: as-cast < solution treatment + air cooling < solution treatment + water cooling. Relative to the as-cast alloy, the free corrosion potential increases by 480 mV and the corrosion current density decreases by three orders of magnitude for the alloy solution subjected to solution treatment plus water cooling. The solution treatment makes more Al to dissolve back into β-Li, and subsequent fast cooling strongly suppresses the precipitation of AlLi. Therefore, the number of micro galvanic couple of AlLi and β-Li decreases, resulting in marked improvement of corrosion resistance.
|
Received: 08 February 2023
32134.14.1005.4537.2023.025
|
|
Fund: National Natural Science Foundation of China(52101142);Natural Science Foundation of Jiangsu Province(BK20200503);Jiangxi Provincial Natural Science Foundation(20224BAB214018) |
Corresponding Authors:
TANG Song, E-mail: stang12s@alum.imr.ac.cn
|
1 |
Peng X, Liu W C, Wu G H. Alloying and application of Mg-Li alloys: a review [J]. Chin. J. Nonferrous Met., 2021, 31: 3024
doi: 10.1016/S1003-6326(21)65712-6
|
|
彭 翔, 刘文才, 吴国华. 镁锂合金的合金化及其应用 [J]. 中国有色金属学报, 2021, 31: 3024
|
2 |
Tian G Y, Yan C M, Yang Z H, et al. Wang J S. Research progress on corrosion and protection of corrosion-resistant Mg-Li alloys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1255
|
|
田光元, 严程铭, 杨智皓 等. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1255
doi: 10.11902/1005.4537.2022.300
|
3 |
Ma C J, Zhang D, Qin J N, et al. Aging behavior of Mg-Li-Al alloys [J]. Trans. Nonferrous Met. Soc. China, 1999, 9: 772
|
4 |
Li C Q, Xu D K, Wang B J, et al. Natural ageing responses of duplex structured Mg-Li based alloys [J]. Sci. Rep., 2017, 7: 40078
doi: 10.1038/srep40078
pmid: 28053318
|
5 |
Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435
pmid: 26480229
|
6 |
Yang Y, Peng X D, Wen H M, et al. Microstructure and mechanical behavior of Mg-10Li-3Al-2.5Sr alloy [J]. Mater. Sci. Eng., 2014, 611A: 1
|
7 |
Kang Z X, Lin K, Zhang J Y. Characterisation of Mg-Li alloy processed by solution treatment and large strain rolling [J]. Mater. Sci. Technol., 2016, 32: 498
doi: 10.1179/1743284715Y.0000000119
|
8 |
Xin T Z, Tang S, Ji F, et al. Phase transformations in an ultralight BCC Mg alloy during anisothermal ageing [J]. Acta Mater., 2022, 239: 118248
doi: 10.1016/j.actamat.2022.118248
|
9 |
Zhang Q F, Song L, Wang J, et al. Mechanical properties and corrosion behavior of an extruded dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 428
|
|
张全福, 宋 蕾, 王 建 等. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 428
doi: 10.11902/1005.4537.2022.084
|
10 |
Tian H Y, Dou Z, Jin Y J, et al. Research on the preparation and corrosion resistance of the low energy plasma electrolysis oxide coating of magnesium lithium alloy [J]. Surf. Technol., 2021, 50(6): 77
|
|
田昊阅, 窦 铮, 金雨佳 等. 镁锂合金低能耗等离子电解氧化膜层的制备与耐蚀性研究 [J]. 表面技术, 2021, 50(6): 77
|
11 |
Cao Y X, Wang M J, Zhou F, et al. Effect of KOH concentration on the growth process and corrosion resistance of micro-arc oxidation (MAO) coatings on LA103Z Mg-Li alloy [J]. Surf. Technol., 2021, 50(3): 348
|
|
曹雅心, 王梦杰, 周 凡 等. KOH浓度对LA103Z镁锂合金微弧氧化成膜过程及膜层耐蚀性的影响 [J]. 表面技术, 2021, 50(3): 348
|
12 |
Wang B J, Jiang C L, Li C Q, et al. Research progress on corrosion behavior of magnesium-lithium alloys [J]. J. Aeronaut. Mater., 2019, 39(1): 1
|
|
王保杰, 姜春龙, 李传强 等. 镁锂合金腐蚀行为研究进展 [J]. 航空材料学报, 2019, 39(1): 1
|
13 |
Song Y W, Shan D Y, Chen R S, et al. Corrosion characterization of Mg-8Li alloy in NaCl solution [J]. Corros. Sci., 2009, 51: 1087
|
14 |
Li C Q, Tong Z P, He Y B, et al. Comparison on corrosion resistance and surface film of pure Mg and Mg-14Li alloy [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2413
doi: 10.1016/S1003-6326(20)65388-2
|
15 |
Zeng Z R, Zhou M R, Esmaily M, et al. Corrosion resistant and high-strength dual-phase Mg-Li-Al-Zn alloy by friction stir processing [J]. Commun. Mater., 2022, 3: 18
|
16 |
Gu M, Wei G, Zhao J, et al. Influence of yttrium addition on the corrosion behaviour of as-cast Mg-8Li-3Al-2Zn alloy [J]. Mater. Sci. Technol., 2017, 33: 864
|
17 |
Morishige T, Obata Y, Goto T, et al. Effect of Al composition on the corrosion resistance of Mg-14 mass% Li system alloy [J]. Mater. Trans., 2016, 57: 1853
doi: 10.2320/matertrans.M2016247
|
18 |
Tang S, Xin T Z, Xu W Q, et al. Precipitation strengthening in an ultralight magnesium alloy [J]. Nat. Commun., 2019, 10: 1003
doi: 10.1038/s41467-019-08954-z
pmid: 30824695
|
19 |
Xin T Z, Zhao Y H, Mahjoub R, et al. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition [J]. Sci. Adv., 2021, 7: eabf3039
doi: 10.1126/sciadv.abf3039
|
20 |
Peng X, Wu G H, Liu W C, et al. Corrosion mechanism and surface protection of Mg-Li alloy [J]. Chin. J. Nonferrous Met., 2022, 32: 1
doi: 10.1016/S1003-6326(21)65776-X
|
|
彭 翔, 吴国华, 刘文才 等. Mg-Li合金的腐蚀机理与表面防护 [J]. 中国有色金属学报, 2022, 32: 1
|
21 |
Sun Q, Tian H, Li Z Z, et al. Solubility of CO2 in water and NaCl solution in equilibrium with hydrate. Part I: experimental measurement [J]. Fluid Phase Equilib., 2016, 409: 131
doi: 10.1016/j.fluid.2015.09.033
|
22 |
Huang X M, Zhang C H, Zhang M L. Corrosion behavior of pure Mg and Mg-Li alloy in 3.5%NaCl of pH = 7 [J]. J. Aeronaut. Mater., 2008, 28(3): 71
|
|
黄晓梅, 张春红, 张密林. 纯镁和镁锂合金在中性 3.5%NaCl溶液中的腐蚀行为 [J]. 航空材料学报, 2008, 28(3): 71
|
23 |
Zhou M, Liu C M, Gao Y H, et al. Corrosion behavior of Cu-containing AZ31 magnesium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 18
|
|
周 苗, 刘楚明, 高永浩 等. 含铜AZ31镁合金的腐蚀行为 [J]. 中国有色金属学报, 2019, 29: 18
|
24 |
Fu X Y, Jia R L, Zhang G L, et al. Effects of rare earths on corrosion behavior of AZ91 Mg alloy [J]. Chin. J. Nonferrous Met., 2021, 31: 1798
|
|
付晓雨, 贾瑞灵, 张贵龙 等. 稀土对AZ91镁合金腐蚀行为的影响 [J]. 中国有色金属学报, 2021, 31: 1798
|
25 |
Liu X Q, Wang X J, Guo E Y, et al. Influence of deformation on the corrosion behavior of LZ91 Mg-Li alloy [J]. Int. J. Miner. Metall. Mater., 2023, 30: 72
doi: 10.1007/s12613-022-2466-8
|
26 |
Meng T Y, Zhang T, Li Y, et al. Corrosion behavior of Mg-Al and Mg-Li alloy sheet in NaCl solution [J]. J. Univ. Sci. Technol. Liaoning, 2016, 39: 446
|
|
孟天宇, 张 涛, 李 月 等. Mg-Al和Mg-Li镁合金板在NaCl水溶液中的腐蚀行为 [J]. 辽宁科技大学学报, 2016, 39: 446
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|