|
|
Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature |
ZHU Huiwen1, ZHENG Li1, ZHANG Hao2, YU Baoyi1( ), CUI Zhibo1 |
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2. Dalian Bingshan Metal Technology Co., Ltd., Dalian 116600, China |
|
Cite this article:
ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1022-1028.
|
Abstract The cast WE43 Mg-alloy with addition of 0.04%Be (WE43-0.04Be) was prepared by electromagnetic stirring melting and casting process, and then subjected to solid solution treatment at 525oC for 10 h plus aging treatment at 225oC for 6, 10 and 14 h, respectively. Afterwards, the microstructure, mechanical property, oxidation behavior and flame-retardant property were assessed for the prepared alloys. The results showed that the WE43-0.04Be alloy aged for 10 h possessed the best comprehensive performance, namely its tensile strength, yield strength and elongation were 253 MPa, 209 MPa and 8.3% respectively, which could meet the mechanical property requirements for high-speed railway structural parts. The WE43-0.04Be alloy will not burn in air when heated up to 850 o C in a furnace. A mixed oxide scale composed of compounds of Mg and alloying elements was generated on the surface of the alloy, thus inhibiting the inwards migration of aggressive species approching onto the interface oxide scale/WE43-0.04Be alloy.
|
Received: 05 September 2023
32134.14.1005.4537.2023.277
|
|
Fund: China State Railway Group Co., Ltd. Science and Technology Research and Development Plan(P2020J024) |
Corresponding Authors:
YU Baoyi, E-mail: baoyiy@163.com
|
[1] |
Song J F, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. J. Magnes. Alloy., 2022, 10: 863
|
[2] |
Czerwinski F. Controlling the ignition and flammability of magnesium for aerospace applications [J]. Corros. Sci., 2014, 86: 1
|
[3] |
Luo C, Wu X, Song H Q, et al. Analysis of application requirements and research directions of magnesium alloys for aircraft engines serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 787
|
|
骆 晨, 吴 雄, 宋汉强 等. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析 [J]. 中国腐蚀与防护学报, 2023, 43: 787
|
[4] |
Shao Y H, Wang J L, Zhang W, et al. High temperature oxidation behavior of a heat resistant magnesium alloy Mg-14Gd-2.3Zn-Zr [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 73
|
|
邵银华, 王金龙, 张 伟 等. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 73
doi: 10.11902/1005.4537.2020.265
|
[5] |
Liu Y, Liu S M, Yu L P, et al. Summary on corrosion behavior and micro-arc oxidation for magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 99
|
|
刘 胤, 刘时美, 于鲁萍 等. 镁合金的腐蚀与微弧氧化膜层研究 [J]. 中国腐蚀与防护学报, 2015, 35: 99
|
[6] |
Wang Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
|
|
沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
|
[7] |
Li D J, Cheng C L, Le Q C, et al. Research progress on oxidation mechanism of magnesium alloys [J]. Mater. Rep., 2023, 37(1): 163
|
|
李多娇, 程春龙, 乐启炽 等. 镁合金氧化机理研究进展 [J]. 材料导报, 2023, 37(1): 163
|
[8] |
Zeng X Q. Study on ignition proof magnesium alloy and its ignition proof principles [D]. Shanghai: Shanghai Jiao Tong University, 2000
|
|
曾小勤. 阻燃镁合金及其阻燃机理研究 [D]. 上海: 上海交通大学, 2000
|
[9] |
Zeng X Q, Wang Q D, Lü Y H, et al. Behavior of surface oxidation on molten Mg-9Al-0.5Zn-0.3Be alloy [J]. Mater. Sci. Eng., 2001, 301A: 154
|
[10] |
Inoue S I, Yamasaki M, Kawamura Y. Oxidation behavior and incombustibility of molten Mg-Zn-Y alloys with Ca and Be addition [J]. Corros. Sci., 2019, 149: 133
|
[11] |
Tan Q Y, Mo N, Jiang B, et al. Oxidation resistance of Mg-9Al-1Zn alloys micro-alloyed with Be [J]. Scr. Mater., 2016, 115: 38
|
[12] |
Liu P P, Li Y, Zheng L, et al. Research progress in magnesium alloy alloying flame retardancy [J]. Met. Form., 2021, (6): 104
|
|
刘平平, 李 妍, 郑 丽 等. 镁合金合金化阻燃研究进展 [J]. 金属加工(热加工), 2021, (6): 104
|
[13] |
Agnew S R, Mulay R P, Polesak III F J, et al. In situ neutron diffraction and polycrystal plasticity modeling of a Mg-Y-Nd-Zr alloy: Effects of precipitation on individual deformation mechanisms [J]. Acta Mater., 2013, 61: 3769
|
[14] |
Du B N, Hu Z Y, Sheng L Y, et al. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60: 44
doi: 10.1016/j.jmst.2020.05.021
|
[15] |
Liang Y J, Che Y C. Handbook of Inorganic Thermodynamics Data [M]. Shenyang: Northeastern University Press, 1993
|
|
梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993
|
[16] |
Tan Q Y, Mo N, Lin C L, et al. Improved oxidation resistance of Mg-9Al-1Zn alloy microalloyed with 60 wt ppm Be attributed to the formation of a more protective (Mg,Be)O surface oxide [J]. Corros. Sci., 2018, 132: 272
|
[17] |
Song X, Wang Z W, Zeng R C. Magnesium alloys: Composition, microstructure and ignition resistance [J]. Chin. J. Nonferrous Met., 2021, 31: 598
|
|
宋 祥, 王忠卫, 曾荣昌. 镁合金: 成分、组织与阻燃 [J]. 中国有色金属学报, 2021, 31: 598
|
[18] |
Zhou Y C, Chen J X, Wang J Y. Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1 - x Si x C2 solid solutions [J]. Acta Mater., 2006, 54: 1317
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|