Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1419-1426    DOI: 10.11902/1005.4537.2023.323
Current Issue | Archive | Adv Search |
Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents
WANG Hua1, WANG Yingjie2, LIU Enze2,3()
1.Department of Naval Equipment, Xi'an 710021, China
2.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1419-1426.

Download:  HTML  PDF(18428KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot corrosion behavior of Co-based alloys Co-9Al-9.5W-xNi (x=5, 15, 20, atomic fraction, %) beneath a film of molten salts mixture of 75% Na2SO4+25% NaCl in air at 900 °C were investigated by means of mass change measurement, SEM with EDS and XRD. The focus of the research is on the influence of Ni on hot corrosion resistance of the alloy Co-9Al-9.5W and the morphology and composition of the formed corrosion products. The results showed that the hot corrosion of the alloys may be characterized by both sulfidation and oxidation; with the increase of Ni content, the hot corrosion resistance of the alloy could be notably improved. The corrosion products scales on the three Co-based alloys were most composed of NiO, CoO, Al2S3 and CoNiO2. Finally, the hot corrosion mechanism of the Co-based alloy in the presence of 75% Na2SO4 and 25% NaCl deposits is also discussed.

Key words:  Co-Al-W alloys      hot corrosion      Ni      hot corrosion mechanism     
Received:  10 October 2023      32134.14.1005.4537.2023.323
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2021YFC2202402);National Natural Science Foundation of China(51471079)
Corresponding Authors:  LIU Enze, E-mail: nzliu@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.323     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1419

Fig.1  Microstructure of Co-9Al-9.5W-20Ni alloy after standard heat treatment
Fig.2  Corrosion kinetics of three Co-Al-W-xNi superalloys at 900 ℃ in 75% Na2SO4+25% NaCl molten salt
Fig.3  XRD patterns of corrosion products formed on three Co-Al-W-xNi superalloys after hot corrosion at 900 ℃ in 75% Na2SO4+25% NaCl molten salt for 2 (a), 16 (b) and 32 h (c)
Fig.4  SEM surface morphologies of three alloys A (a-d), B (e-h) and C (i-l) after hot corrosion in 75% Na2SO4+25% NaCl molten salt at 900 °C for 2 h (a, b, e, f, i, j) and 32 h (c, d, g, h, k, l)
Fig.5  Cross-sectional micrographs of alloys A (a), B (b) and C (c) after hot corrosion in Na2SO4 and NaCl molten salt at 900 °C for 32 h
Fig.6  SEM morphology of the alloy A after hot corrosion in 75% Na2SO4+25% NaCl at 900 °C for 32 h (a), and EDS mappings of Al (b), Co (c), Ni (d), O (e), S (f) and W (g)
Fig.7  SEM morphology of the alloy B exposed to 75% Na2SO4+25% NaCl at 900 °C for 32 h (a), and EDS mappings of Al (b), Co (c), Ni (d), O (e), S (f) and W (g)
Fig.8  SEM morphology of the alloy C exposed to 75% Na2SO4+25% NaCl at 900 °C for 32 h (a), and EDS mappings of Al (b), Co (c), Ni (d), O (e), S (f) and W (g)
1 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties [J]. J. Propul. Power, 2006, 22: 361
doi: 10.2514/1.18239
2 Pollock T M, Dibbern J, Tsunekane M, et al. New Co-based γ-γ′ high-temperature alloys [J]. JOM, 2010, 62: 58
3 Lin W J, Duan J F, Wang C L. Study on precipitation enhancement of Ni-based superalloys [J]. Foundry Technol., 2008, 607: 29
4 Li X G, Feng Q. Co-Al-W ternary alloy heat treatment organization [J]. J. Sci. Eng., 2008, 30: 1369
5 Davis J R. Nickel, Cobalt, and Their Alloys [M]. Materials Park: ASM International, 2000
6 Chinen H, Sato J, Omori T, et al. New ternary compound Co3 (Ge, W) with L12 structure [J]. Scr. Mater., 2007, 56: 141
doi: 10.1016/j.scriptamat.2006.09.007
7 Davydov A V, Kattner U R, Josell D, et al. Determination of the CoTi congruent melting point and thermodynamic reassessment of the Co-Ti system [J]. Metall. Mater. Trans., 2001, 32A: 2175
8 Shinagawa K, Chinen H, Omori T, et al. Phase equilibria and thermodynamic calculation of the Co–Ta binary system [J]. Intermetallics, 2014, 49: 87
doi: 10.1016/j.intermet.2014.01.015
9 Zhu L L, Wei C D, Qi H Y, et al. Experimental investigation of phase equilibria in the Co-rich part of the Co-Al-X (X=W, Mo, Nb, Ni, Ta) ternary systems using diffusion multiples [J]. J. Alloy. Compd., 2017, 691: 110
doi: 10.1016/j.jallcom.2016.08.210
10 Suzuki A, Inui H, Pollock T M. L12-strengthened cobalt-base superalloys [J]. Annu. Rev. Mater. Res., 2015, 45: 345
doi: 10.1146/matsci.2015.45.issue-1
11 Tanaka K, Ohashi T, Kishida K, et al. Single-crystal elastic constants of Co3(Al, W) with the L12 structure [J]. Appl. Phys. Lett., 2007, 91: 181907
doi: 10.1063/1.2805020
12 Ooshima M, Tanaka K, Okamoto N L, et al. Effects of quaternary alloying elements on the γ′ solvus temperature of Co-Al-W based alloys with fcc/L12 two-phase microstructures [J]. J. Alloy. Compd., 2010, 508: 71
doi: 10.1016/j.jallcom.2010.08.050
13 Lass E A, Williams M E, Campbell C E, et al. γ′ phase stability and phase equilibrium in ternary Co-Al-W at 900 °C [J]. J. Phase Equilib. Diffus., 2014, 35: 711
doi: 10.1007/s11669-014-0346-2
14 Suzuki A, Pollock T M. High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys [J]. Acta Mater., 2008, 56: 1288
doi: 10.1016/j.actamat.2007.11.014
15 Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
16 Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γ′ phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49: 1474
doi: 10.2320/matertrans.MER2008073
17 Yang S Y, Jiang M, Wang L. Thermodynamic analysis of γ and γ′ phases in new-type co-based superalloy [J]. J. Northeastern Univ. (Nat. Sci.), 2012, 33: 1274
杨舒宇, 蒋 敏, 王 磊. 新型钴基高温合金γγ′相行为的热力学分析 [J]. 东北大学学报 (自然科学版), 2012, 33: 1274
18 Weng F, Yu H J, Wan K, et al. The influence of Nb on hot corrosion behavior of Ni-based superalloy at 800 °C in a mixture of Na2SO4-NaCl [J]. J. Mater. Res., 2014, 29: 2596
doi: 10.1557/jmr.2014.282
19 Goebel J A, Pettit F S, Goward G W. Mechanisms for the hot corrosion of nickel-base alloys [J]. Metall. Trans., 1973, 4: 261
20 Lu J T, Zhu S L, Wang F H. High temperature corrosion behavior of an AIP NiCoCrAlY coating modified by aluminizing [J]. Surf. Coat. Technol., 2011, 205: 5053
doi: 10.1016/j.surfcoat.2011.05.005
21 Jiang S M, Peng X, Bao Z B, et al. Preparation and hot corrosion behaviour of a MCrAlY+AlSiY composite coating [J]. Corros. Sci., 2008, 50: 3213
doi: 10.1016/j.corsci.2008.08.018
22 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008
郭建亭. 高温合金材料学 (上) 应用基础理论 [M]. 北京: 科学出版社, 2008
23 Knutsson P, Lai H P, Stiller K. A method for investigation of hot corrosion by gaseous Na2SO4 [J]. Corros. Sci., 2013, 73: 230
doi: 10.1016/j.corsci.2013.04.006
24 Mahobia G S, Paulose N, Mannan S L, et al. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718 [J]. Int. J. Fatigue, 2014, 59: 272
doi: 10.1016/j.ijfatigue.2013.08.009
25 Sidhu T S, Agrawal R D, Prakash S. Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review [J]. Surf. Coat. Technol., 2005, 198: 441
doi: 10.1016/j.surfcoat.2004.10.056
26 Meier G H. A review of advances in high-temperature corrosion [J]. Mater. Sci. Eng., 1989, 120/121A: 1
27 Suzuki A, Wu F, Murakami H, et al. High temperature characteristics of Ir-Ta coated and aluminized Ni-base single crystal superalloys [J]. Sci. Technol. Adv. Mater., 2004, 5: 555
doi: 10.1016/j.stam.2004.03.004
28 Wang J, Zhou L Z, Sheng L Y, et al. The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure [J]. Mater. Des., 2012, 39: 55
doi: 10.1016/j.matdes.2012.02.020
29 Yan H Y, Vorontsov V A, Dye D. Alloying effects in polycrystalline γ′ strengthened Co-Al-W base alloys [J]. Intermetallics, 2014, 48: 44
doi: 10.1016/j.intermet.2013.10.022
30 Xu Y T, Xia T D, Yan J Q. Effect of alloying elements to hot corrosion behavior of novel Co-Al-W superalloy [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 457
徐仰涛, 夏天东, 闫健强. 合金元素对新型Co-Al-W合金热腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 457
31 Jiang S M, Li H Q, Ma J, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating II: oxidation and hot corrosion [J]. Corros. Sci., 2010, 52: 2316
doi: 10.1016/j.corsci.2010.03.032
32 Klein L, Killian M S, Virtanen S. The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys [J]. Corros. Sci., 2013, 69: 43
doi: 10.1016/j.corsci.2012.09.046
33 Kobayashi S, Tsukamoto Y, Takasugi T. The effects of alloying elements (Ta, Hf) on the thermodynamic stability of γ′-Co3 (Al, W) phase [J]. Intermetallics, 2012, 31: 94
doi: 10.1016/j.intermet.2012.06.006
34 Ou X M, Sun Z, Sun M, et al. Hot-corrosion mechanism of Ni-Cr coatings at 650 ℃ under different simulated corrosion conditions [J]. J. China Univ. Min. Technol., 2008, 18: 444
doi: 10.1016/S1006-1266(08)60092-9
35 Li W J, Liu Y, Wang Y, et al. Hot corrosion behavior of Ni-16Cr-xAl based alloys in mixture of Na2SO4-NaCl at 600 ℃ [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 2617
doi: 10.1016/S1003-6326(11)61100-X
36 Mahesh R A, Jayaganthan R, Prakash S. A study on hot corrosion behaviour of Ni-5Al coatings on Ni-and Fe-based superalloys in an aggressive environment at 900 ℃ [J]. J. Alloy. Compd., 2008, 460: 220
doi: 10.1016/j.jallcom.2007.05.092
37 Huang Y, Wang L, Liu Y, et al. Investigation on hot corrosion resistance of a new directional solidification superalloy at 750 ℃ [J]. J. Northeastern Univ. (Nat. Sci.), 2012, 33: 365
黄 炎, 王 磊, 刘 杨 等. 新型定向凝固高温合金750℃抗热腐蚀性能 [J]. 东北大学学报 (自然科学版), 2012, 33: 365
38 Liu G M, Yu F, Tian J H, et al. Influence of pre-oxidation on the hot corrosion of M38G superalloy in the mixture of Na2SO4-NaCl melts [J]. Mater. Sci. Eng., 2008, 496A: 40
39 Chen Z H, Dong T, Qu W W, et al. Influence of Cr content on hot corrosion and a special tube sealing test of single crystal nickel base superalloy [J]. Corros. Sci., 2019, 156: 161
doi: 10.1016/j.corsci.2019.05.001
40 Ye D L, Hu J H. Practical Inorganic Thermodynamics Manual [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002
叶大伦, 胡建华. 实用无机物热力学数据手册 [M]. 第2版. 北京: 冶金工业出版社, 2002
41 Johnson J B, Nicholls J R, Hurst R C, et al. The mechanical properties of surface scales on nickel-base superalloys—II. Contaminant corrosion [J]. Corros. Sci., 1978, 18: 543
doi: 10.1016/S0010-938X(78)80028-6
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] ZHOU Xin, WU Dakang, CHENG Xu, HU Junying, ZHONG Xiankang. Research Progress of Detection Techniques for Permeated Hydrogen[J]. 中国腐蚀与防护学报, 2023, 43(6): 1203-1215.
[3] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[4] HE Binbin, HOU Yu, WU Zixuan, LI Zili, LI Tao, YAN Jianwei. Influence of Inner Diameter of Nozzle on Stress State of Horizontal Reactor Nozzle[J]. 中国腐蚀与防护学报, 2023, 43(6): 1399-1406.
[5] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[6] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[7] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[8] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[9] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[10] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[11] ZHAO Lu, LI Qian, ZHAO Tianliang. Corrosion Behavior and Sealing Technologies of Bronze[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[12] WANG Kai, LI Chenpei, LU Jinling, WANG Zhenjiang, WANG Wei. Cavitation Resistance of NiCoCrFeNb0.45 Eutectic High Entropy Alloy for Hydraulic Machinery[J]. 中国腐蚀与防护学报, 2023, 43(5): 1079-1086.
[13] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[14] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[15] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
No Suggested Reading articles found!