Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1312-1318    DOI: 10.11902/1005.4537.2022.385
Current Issue | Archive | Adv Search |
Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint
LIAO Minxing1, LIU Jun2, DONG Baojun3, LENG Xuesong1, CAI Zelun1, WU Junwei3, HE Jianchao1()
1.Institute of Special Environments Physical Sciences, Harbin Institute of Technology, Shenzhen 518055, China
2.Shanghai Engineering Research Center of Space Engine, Shanghai 201112, China
3.School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
Cite this article: 

LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1312-1318.

Download:  HTML  PDF(8321KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

1Cr18Ni9Ti is brazed with BNi-2 thin strip filler metal. The microstructure, electrochemical characteristics, and hardness and tensile properties of the joint are assessed. While the evolution of the microstructure and mechanical properties of the joint is examined after salt spray corrosion test. The results show that the 1Cr18Ni9Ti brazed joint is well formed, and the microhardness of the weld is significantly higher than that of the base metal on both sides. The tensile strength of the welded joint reaches 500 MPa. The corrosion potential of the weld seam is higher than that of 1Cr18Ni9Ti base metal, and thus the joint is subject to galvanic corrosion in the salt spray environment. The observation results show that the fracture of the uncorroded brazed joint occurs at the adjacent base metal, and the fracture analysis shows that during tensile process, cracks may firstly initiate at the brazing solder, and then cracks propagate to the base metal, and finally fracture occurs. The fractured surface exhibits obvious features of plastic deformation. After salt spray corrosion test, the mechanical properties of the 1Cr18Ni9Ti brazed joint decreased, and the fracture occurred at the interface of brazed joint/base metal after the tensile test, but without characteristics of plastic deformation.

Key words:  welded joints      brazing      galvanic corrosion      microstructure      mechanical property     
Received:  06 December 2022      32134.14.1005.4537.2022.385
ZTFLH:  TG174  
Fund: Core Technology Research and Engineering Verification of Development and Reform Commission of Shenzhen Municipality(202100037)
Corresponding Authors:  HE Jianchao, E-mail: hejianchao@hit.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.385     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1312

Part1#2#3#Average value
Base metal164.0168.9168.9167.3±2.8
Weld joint285.9270.4292.8283.0±11.5
Table 1  Micro-hardness of 1Cr18Ni9Ti alloy brazing joint (HV)
Fig.1  Topography of tensile property specimen size (unit: mm)
Fig.2  Tafel polarization curve results of three samples measured in 5% NaCl solution: (a) polarization curve, (b) EB/V, (c) corrosion current, (d) corrosion potential
Fig.3  Microcell electrochemical results of 1Cr18Ni9Ti brazed joints in 5%NaCl solution
Fig.4  Microstructure of 1Cr18Ni9Ti alloy brazing specimen after welding: (a) low magnification metallographic structure of weld, (b) metallographic structure of base metal, (c) high magnification metallographic structure of weld
Fig.5  Element distribution of 1Cr18Ni9Ti alloy brazed joints: (a) mapping, (b) line scan
Fig.6  3D morphology of 1Cr18Ni9Ti brazed joints after salt spray corrosion: (a1, a2) 1 d, (b1, b2) 3 d, (c1, c2) 6 d, (d1, d2) 10 d, (e1, e2) 15 d, (f1, f2) 20 d
Fig.7  Height difference of 1Cr18Ni9Ti brazed joint after salt spray corrosion
Fig.8  Stress-strain curve of 1Cr18Ni9Ti brazed joint tensile specimen: (a) before corrosion, (b) corrosion for 10 d, (c) corrosion for 20 d
Fig.9  Macro morphology of tensile samples of 1Cr18Ni9Ti brazed joints before corrosion (a), after corrosion for 10 d (b) and after corrosion for 20 d (c)
1 Zhang Q S. Stainless Steel Welding Technology [M]. Beijing: China Machine Press, 2015: 1
张其枢. 不锈钢焊接技术 [M]. 北京: 机械工业出版社, 2015: 1
2 Gu H M, Tang X H. Process characteristics of vacuum brazing for stainless steel and its application [J]. Hot Work. Technol., 2011, 40(23): 164
谷海明, 唐新华. 不锈钢真空钎焊工艺特点及其应用 [J]. 热加工工艺, 2011, 40(23): 164
3 Zhang Q Y, Zhuang H S. Handbook of Brazing and Soldering [M]. Beijing: China Machine Press, 2017: 233
张启运, 庄鸿寿. 钎焊手册 [M]. 北京: 机械工业出版社, 2017: 233
4 Yang M X, Jia Z D, Lin X C, et al. Vacuum brazing 0Cr18Ni9 stainless steel pipe to itself with BNi-2 filler alloy [J]. J. Harbin Inst. Technol., 2016, 48 (5) : 184
杨敏旋, 贾振东, 蔺晓超 等. 采用BNi-2钎料真空钎焊0Cr18Ni9不锈钢管材 [J]. 哈尔滨工业大学学报, 2016, 48 (5) : 184
5 Jiang W C, Gong J M, Tu S T. Effect of holding time on vacuum brazing for a stainless steel plate-fin structure [J]. Mater. Des., 2010, 31: 2157
doi: 10.1016/j.matdes.2009.11.001
6 Jiang W C, Gong J M, Tu S T. Effect of brazing temperature on tensile strength and microstructure for a stainless steel plate-fin structure [J]. Mater. Des., 2011, 32: 736
doi: 10.1016/j.matdes.2010.07.032
7 Iversen A, Leffler B. Aqueous corrosion of stainless steels [J]. Shreir's Corros., 2010, 3: 1802
8 Yuan Y, Zhou X, Li S. Experimental study on intergranular corrosion resistance of 304L stainless steel vacuum brazed joints [J]. Hot Work. Technol., 2021, 50 (11) : 63
袁 野, 周 希, 李 莎. 304L不锈钢真空钎焊接头晶间腐蚀性能试验研究 [J]. 热加工工艺, 2021, 50 (11) : 63
9 Zhao G X, Chen J S, Wang Q Z, et al. Microstructure and Electrochemical Corrosion Properties of 316L stainless steel joints brazed with BNi5 [A]. ChenSB, ZhangYM, FengZL. Transactions on Intelligent Welding Manufacturing [M]. Singapore: Sprin-ger, 2019: 137
10 Penyaz M, Otto J L, Popov N, et al. Microstructure influence on corrosion resistance of brazed AISI 304L/NiCrSiB joints [J]. Met. Mater. Int., 2021, 27: 4142
doi: 10.1007/s12540-021-00974-z
11 Wang X Y, Huang F, Liu H X, et al. Corrosion resistance of welded joints of Q690 bainite bridge steel in simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 826
王昕煜, 黄 峰, 刘海霞 等. Q690贝氏体桥梁钢焊接接头在模拟乡村大气中耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 826
doi: 10.11902/1005.4537.2021.258
12 Cheng P, Liu J, Mu W G, et al. Corrosion behavior of weld joint of 690 MPa weathering bridge steel in simulated industrial atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 95
程 鹏, 刘 静, 牟文广 等. 690 MPa级耐候桥梁钢焊接接头在模拟工业大气环境下的耐蚀性研究 [J]. 中国腐蚀与防护学报, 2023, 43: 95
13 Mirzaei S, Binesh B. Microstructure evolution mechanism and corrosion behavior of transient liquid phase bonded 304L stainless steel [J]. Metals Mater. Int., 2021, 27: 3417
doi: 10.1007/s12540-020-00671-3
14 Kazazi A, Ekrami A. Corrosion behavior of TLP bonded stainless steel 304 with Ni-based interlayer [J]. J. Manuf. Processes, 2019, 42: 131
doi: 10.1016/j.jmapro.2019.04.029
[1] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[2] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[3] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[4] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[5] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[6] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[7] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[8] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[9] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[10] SHANG Jin, GU Yan, ZHAO Jing, WANG Zhe, ZHANG Bo, ZHAO Tongjun, CHEN Zehao, WANG Jinlong. Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[11] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[12] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[13] ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[14] LV Xin, DENG Kunkun, WANG Cuiju, NIE Kaibo, SHI Quanxin, LIANG Wei. Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[15] LIU Jinzeng, XING Shaohua, QIAN Yao, ZHANG Dalei, MA Li. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
No Suggested Reading articles found!