Please wait a minute...
J Chin Soc Corr Pro  2007, Vol. 27 Issue (6): 329-333     DOI:
Research Report Current Issue | Archive | Adv Search |
Electrochemical Corrosion Behaviors of the Galvanic Couple Cu/Sn63-Pb37 in simulated atmosphere
;Chuanwei Yan;
中国科学院金属研究所金属腐蚀与防护国家重点实验室
Download:  PDF(301KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Cu/Sn63-Pb37 galvanic couple appeared in most electronic devices. This paper was to investigate the corrosion characteristics and mechanisms of this couple, which was exposed in the typically simulated air condition at 40?C with 95%RH. The in-situ electrochemical information of the couple have been performed with related zero resistance ampere techniques under thin moisture film. According to the time dependent features of galvanic potential and anodic galvanic current density results, the Cu acted as anode and the Sn63-Pb37 acted as cathode during exposure. The gradual formed corrosion products, which were detected by FT-IR and XRD, restrained the anodic polarization behavior occurring on Cu surface. The hydrolyzed CO2 on the Sn63-Pb37 surface induced the breakdown of Pb oxides formed in air naturally, which was confirmed from the SEM surface morphologies. Despite the exact corrosion rates was not obtained from the galvanic current density data, the changing trend were valuable for estimating the atmospheric corrosion behavior of the Cu/Sn63-Pb37 couple.
Key words:  galvanic corrosion      Cu      Sn63-Pb37 solder      
Received:  27 April 2006     
ZTFLH:  TG172.3  

Cite this article: 

Chuanwei Yan. Electrochemical Corrosion Behaviors of the Galvanic Couple Cu/Sn63-Pb37 in simulated atmosphere. J Chin Soc Corr Pro, 2007, 27(6): 329-333 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2007/V27/I6/329

[1]Guttenplan J D,Hashimoto L N.Corrosion control for electricalcontacts in submarine based electronic equipment[J].Mater.Perform.,1978,18(12):49-55
[2]Sinclair J D.Corrosion of electronics[J].J.Electrochem.Soc.,1988,135(3):89C-95C
[3]Li Q.Corrosion of electronic materials[J].Electron.Compon.Mater.,1996,15(6):48-50(李青.电子材料的腐蚀[J].电子元件与材料,1996,15(6):48-50)
[4]Aastrup T,Wadsak M,Shreiner M.Experimental in situ studiesof copper exposed to humidified air[J].Corros.Sci.,2000,42:957-967
[5]Shin B L,Young R Y,Ja Y J.Electrochemical migration charac-teristics of eutectic Sn Pb solder alloy in printed circuit board[J].Thin Solid Films,2006,504:294-297
[6]Manning M I.Atmospheric corrosion issues today[J].Industrial Corros.,1989,7(8):5-9
[7]Mattsson E.Corrosion:an electrochemical problem[J].Chem.Technol.,1985,4:234-243
[8]Cao C N.Electrochemical Corrosion Theory[M].Beijing:Chemi-cal Industry Press,2004(曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004)
[9]Mansfeld F,Kenkel J V.Galvanic corrosion of Al alloysⅢ.Theeffect of area ratio[J].Corros.Sci.,1975,15:239-250
[10]Xu J L,Li M Z.Research on electrochemical monitoring of at-mospheric corrosion[J].J.Chin.Soc.Corros.Prot.,1987,7(1):60-65(徐俊丽,李牧铮.大气腐蚀电化学监测的研究[J].中国腐蚀与防护学报,1987,7(1):60-65)
[11]Zakipour S,Lygraf C.Evaluation of laboratory tests to simulateindoor corrosion of electrical contact materials[J].J.Electrochem.Soc.,1986,133(1):21-30
[12]Chen Z Y,Zakipour S,Persson D.The effects of sodium chlo-ride particles on the atmospheric corrosion of pure copper[J]Corrosion,2004,60(5):479-491
[13]Debiemme C,Ammeloo F,Sutter E M M.X-Ray photoemissioninvestigation of the corrosion film formed on a polished Cu-13Snalloy in aerated Na Cl solution[J].Appl.Surf.Sci.,2001,174:55-61
[14]Ryck I D,Biezen E V.Study of tin corrosion:the influence of al-loying elements[J].J.Cultural Heritage,2004,5:189-195
[15]Lu Y K.Thermodynamics of surface corrosion of solid pure lead、tin and their alloy[J].J.Univ.Sci.Technol.Beijing,1989,11(2):167-172(鲁永奎.固态铅、锡及其合金表面腐蚀热力学[J].北京科技大学学报,1989,11(2):167-172)
[1] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[7] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[8] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[9] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[10] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[11] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[12] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[13] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[14] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[15] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
No Suggested Reading articles found!