Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (2): 191-198    DOI: 10.11902/1005.4537.2019.227
Current Issue | Archive | Adv Search |
High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe
ZHENG Yanxin1, LIU Ying1, SONG Qingsong1, ZHENG Feng1, JIA Yuchuan2, HAN Peide1()
1 College of Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
2 Luoyang Pengfei Abrasion Resistant Material Company Limited, Luoyang 471200, China
Download:  HTML  PDF(11381KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of Cu matrix with reinforcers of graphite, ZrSiO4 and Fe were prepared via powder metallurgy, then their high temperature oxidation behavior and wear performance were assessed in air at 25, 250, 350 and 450 ℃. The results show that the size and distribution of Fe particles in Cu-matrix affect the oxidation resistance and wear resistance of Cu-based friction materials. With the increasing temperature, the formed oxidation product of Cu on the surface of copper-based friction materials is Cu2O, but that of Fe changed from Fe2O3 to Fe3O4, and the thickness of oxide scale increased gradually. When Fe particles of small size distribute uniformly in the Cu-matrix, it is more conducive to improving the overall oxidation resistance of the Cu-matrix, in the range of 350~450 ℃, the formation of stable oxide scale was beneficial to reduce the adhesive wear, demonstrating better high-temperature wear resistance. However, when the Fe particles in the Cu-matrix were of large size, the phenomenon of heterogeneous oxidation can be observed, which is not conducive to improving the high-temperature wear resistance.

Key words:  Cu-based friction material      Fe      high-temperature oxidation      high-temperature wear resistance     
Received:  26 April 2019     
ZTFLH:  TF124  
Fund: National Natural Science Foundation of China(U1860204);National Natural Science Foundation of China(51871159);Henan Province Science and Technology Cooperation Project(182106000014)
Corresponding Authors:  HAN Peide     E-mail:  hanpeide@126.com

Cite this article: 

ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 191-198.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.227     OR     https://www.jcscp.org/EN/Y2020/V40/I2/191

ComponentsCu-matrixFeCZrSiO4Others
Sample 160~7010~124~812~153~7
Sample 265~757~103~613~153~7
Table 1  Components of copper-based friction materials
Fig.1  Optical microstructures of sample 1 (a), sample 2 (b), and corresponding EDS results of points 1 (c), 2 (d), 3 (e) and 4 (f) in Fig.1a
Fig.2  Microstructures of unworn surfaces of sample 1 (a1~d1) and sample 2 (a2~d2) at 25 ℃ (a1, a2), 250 ℃ (b1, b2), 350 ℃ (c1, c2) and 450 ℃ (d1, d2)
Fig.3  SEM images and EDS mapping analysis of sample 1 at 250 ℃ (a), 350 ℃ (b) and sample 2 at 350 ℃ (c)
Fig.4  XRD pattern of surfaces of samples before and after high temperatures friction
Fig.5  Schematic diagram of oxidation at high temperature of sample 1 and sample 2
Fig.6  Friction coefficient (a) and wear rate (b) of samples at different temperatures
Fig.7  Worn surfaces of sample 1 (a1~d1) and sample 2 (a2~d2) at 25 ℃ (a1, a2), 250 ℃ (b1, b2), 350 ℃ (c1, c2) and 450 ℃ (d1, d2)
Fig.8  Three-dimensional worn surfaces of sample 1 (a1~d1) and sample 2 (a2~d2) at 25 ℃ (a1, a2), 250 ℃ (b1, b2), 350 ℃ (c1, c2) and 450 ℃ (d1, d2)
[1] Wang W H, Xiao K, Zheng D. Investigation on Cu-based ceramic-metal friction material used in heavy loading conditions [J]. Powder Metall. Technol., 2007, 25(5): 344
(王文辉, 肖凯, 郑聃. 新型重负荷铜基金属陶瓷摩擦材料的研究 [J]. 粉末冶金技术, 2007, 25(5): 344)
[2] Österle W, Prietzel C, Kloß H, et al. On the role of copper in brake friction materials [J]. Tribol. Int., 2010, 43(12): 2317
[3] Peter I, Rosso M. Study and optimization of metal based sintered materials for automotive brake friction production [J]. Solid State Phenom., 2016, 254: 20
[4] Wang X F, Yin C L. Application situations of powder metallurgy friction materials and requests of raw materials [J]. Powder Metall. Ind., 2017, 27(3): 1
(王秀飞, 尹彩流. 粉末冶金摩擦材料的应用现状及对原材料的要求 [J]. 粉末冶金工业, 2017, 27(3): 1)
[5] Blau P J. Elevated-temperature tribology of metallic materials [J]. Tribol. Int., 2010, 43(7): 1203
[6] Liu J X, Guo Y Q, Han C S, et al. Study of high temperature fatigue wear of copper powder metallurgy (Cu-PM) friction material [J]. Lubricat. Eng., 2004, (3): 1
(刘建秀, 郭炎强, 韩长生等. 铜基粉末冶金摩擦材料高温疲劳磨损规律 [J]. 润滑与密封, 2004, (3): 1)
[7] Yin Y G, Zheng Z X, Ma S B, et al. Influence of temperature on friction and wear properties of Cu-matrix/graphite self-lubricating composite materials [J]. Chin. J. Nonferrous Met., 2004, 14(11): 1856
(尹延国, 郑治祥, 马少波等. 温度对铜基自润滑材料减摩耐磨特性的影响 [J]. 中国有色金属学报, 2004, 14(11): 1856)
[8] Zhong Z G, Deng H J, Li M, et al. Effects of Fe content on friction and wear properties of Cu-Ceramet friction materials [J]. J. Mater. Eng., 2002, (8): 17
(钟志刚, 邓海金, 李明等. Fe含量对Cu基金属陶瓷摩擦材料摩擦磨损性能的影响 [J]. 材料工程, 2002, (8): 17)
[9] Yao P P, Xiong X, Li S P, et al. Friction and wear behavior and mechanism of Fe and SiO2 in Cu-based P/M friction material [J]. Tribology, 2006, 26(5): 478
(姚萍屏, 熊翔, 李世鹏等. Fe及SiO2对铜基刹车材料摩擦磨损性能的影响机制 [J]. 摩擦学学报, 2006, 26(5): 478)
[10] Yu X, Guo Z M, Yang J, et al. Effect of Fe content and friction components on properties of copper-based powder metallurgy friction material [J]. Powder Metall. Technol., 2014, 32(1): 43
(于潇, 郭志猛, 杨剑等. Fe含量及摩擦组元对铜基粉末冶金摩擦材料性能的影响 [J]. 粉末冶金技术, 2014, 32(1): 43)
[11] Jaafar T R, Selamat M A, Rusila Z J, et al. Friction and wear characteristics of Cu-based P/M brake friction materials with addition of Fe and C [J]. Appl. Mech. Mater., 2014, 661: 21
[12] Liu Y C, Schissler J M, Mathia T G. The influence of surface oxidation on the wear resistance of cast iron [J]. Tribol. Int., 1995, 28(7): 433
[13] Qiu M, Zhang Y Z. Effect of different atmospheres on dry friction behavior of steel sliding against brass at high speed [J]. Chin. Sci. Bull., 2009, 54(24): 4589
[14] Wang Z T, Meng J S. Frictional Wear and Wear Resistant Materials [M]. Harbin: Harbin Institute of Technology Press, 2013
(王振廷, 孟君晟. 摩擦磨损与耐磨材料 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2013)
[15] Fan Z Y, Ye Y P, Wang Y, et al. Effect of iron powder particle size on brake friction performance of powder metallurgy materials [J]. Powder Metall. Ind., 2016, 26(3): 28
(樊子源, 叶亚平, 王晔等. 铁粉粒度对粉末冶金材料制动摩擦性能的影响 [J]. 粉末冶金工业, 2016, 26(3): 28)
[16] Xiong D S, Li X B. Oxidation wear and oxide lubrication [J]. Mater. Sci. Eng. Powder Metall., 1996, 1(1): 49
(熊党生, 李溪滨. 氧化磨损与氧化物润滑 [J]. 粉末冶金材料科学与工程, 1996, 1(1): 49)
[1] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[4] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[5] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[6] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[7] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[8] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[9] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[10] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[11] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[12] Jiapeng LIAO,Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[13] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[14] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[15] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
No Suggested Reading articles found!