Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (5): 455-462    DOI: 10.11902/1005.4537.2019.202
Current Issue | Archive | Adv Search |
Galvanic Corrosion of Aircraft Components in Atmospheric Environment
DING Qingmiao, QIN Yongxiang(), CUI Yanyu
College of Airport, Civil Aviation University of China, Tianjin 300300, China
Download:  HTML  PDF(4427KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

7050 Al-alloy is often used for medium and heavy plate extrusions as aircraft components. Based on large-scale simulation software COMSOL Multiphysics, a corrosion simulation model for the galvanic couple of 7050 Al-alloy and AerMet100 steel in atmospheric environment is established. The effect of salt deposits on the surface of galvanic couple, the relative humidity of atmospheric environment, and the area ratio of the anode to the cathode on the corrosion behavior was investigated respectively. The results show that the corrosion rate is the fastest when the relative humidity of the atmosphere is 0.91. When the surface salt deposits exceeds 5.7 g/m2, severe corrosion will occur. Changing the ratio of cathode to anode will not cause the electrode polarity reversal. The corrosion rate of 7050 Al-alloy are positively correlated with the salt deposits and the area ratio of cathode to anode.

Key words:  7050 Al-alloy      AerMet100 steel      COMSOL      atmospheric galvanic corrosion     
Received:  13 November 2019     
ZTFLH:  TG174  
Fund: Tianjin Graduate Research and Innovation Project(2019YJSS069);Basic Scientific Research Service Fee of Central University of Civil Aviation University of China(3122019107)
Corresponding Authors:  QIN Yongxiang     E-mail:  550462668@qq.com

Cite this article: 

DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 455-462.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.202     OR     https://www.jcscp.org/EN/Y2020/V40/I5/455

Fig.1  7050 aluminum alloy substrate—AerMet100 steel bolt connection model
Fig.2  3D model simplification method
Fig.3  Two-dimensional axisymmetric model
Fig.4  Schematic diagram of the current flow of the microcell
Fig.5  Relationship between electrolyte physical properties and atmospheric relative humidity: (a) conductivity vs relative humidity, (b) oxygen diffusion coefficient vs relative humidity, (c) amount of dissolved oxygen vs relative humidity
Fig.6  Relationship between liquid film thickness and atmospheric relative humidity
Fig.7  Cloud diagram of electrolyte current density distribution (r=10)
Fig.8  Cloud diagram of electrode surface potential (r=10)
Fig.9  Cloud diagram of electrolyte current density distribution
Fig.10  Maximum corrosion depth of 7050 aluminum alloy
Fig.11  Total current density on the electrode surface: (a) RH=0.79, (b) RH=0.85, (c) RH=0.91, (d) RH=0.97
Fig.12  Variation of maximum current density of paired contacts with humidity
Fig.13  Variation of maximum corrosion depth of 7050 aluminum alloy with humidity
Fig.14  Cloud diagrams of electrolyte current density distribution at different cathode/anode area ratios: (a) r=2 mm, (b) r=4 mm, (c) r=6 mm, (d) r=8 mm, (e) r=10 mm, (f) r=12 mm
Fig.15  Electrode potential of BC segment at different bolt head radius
Fig.16  Surface current density of BC segment electrode under different bolt head
[1] Chen Y L, Huang H L, Zhang Y, et al. A method of atmospheric corrosion prediction for aircraft structure [J]. Mater. Corros., 2019, 70: 79
[2] Sun X G, Lin P, Man C, et al. Prediction model for atmospheric corrosion of 7005-T4 aluminum alloy in industrial and marine environments [J]. Int. J. Miner. Metall. Mater., 2018, 25: 1313
[3] DeSantis M K, Triantafyllidou S, Schock M R, et al. Mineralogical evidence of galvanic corrosion in drinking water lead pipe joints [J]. Environ. Sci. Technol., 2018, 52: 3365
doi: 10.1021/acs.est.7b06010 pmid: 29446300
[4] Fu L, Liu Y L, Wang C W, et al. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry [J]. J. Semicond., 2018, 39: 046001
[5] Rahimi E, Rafsanjani-Abbasi A, Imani A, et al. Correlation of surface Volta potential with galvanic corrosion initiation sites in solid-state welded Ti-Cu bimetal using AFM-SKPFM [J]. Corros. Sci., 2018, 140: 30
[6] Coy A E, Viejo F, Skeldon P, et al. Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion [J]. Corros. Sci., 2010, 52: 3896
[7] Davidson R D, Cubides Y, Andrews J L, et al. Magnesium nanocomposite coatings for protection of a lightweight al alloy: Modes of corrosion protection, mechanisms of failure [J]. Phys. Status Solidi, 2019, 216A: 1800817
[8] Hou L G, Yu J J, Zhang D, et al. Corrosion behavior of friction stir welded Al-Mg-(Zn) alloys [J]. Rare Met. Mater. Eng., 2017, 46: 2437
doi: 10.1016/S1875-5372(17)30212-6
[9] Sun Q. Prediction and verification of galvanic corrosion of 7B04 aluminum alloy under simulated marine environment [J]. Fail. Anal. Prev., 2018, 13: 203
(孙强. 模拟海洋环境下7B04铝合金电偶腐蚀预测及验证 [J]. 失效分析与预防, 2018, 13: 203)
[10] Zhang W Y. Progress in research on galvanic corrosion behavior and protection [J]. Total Corros. Control, 2018, 32(12): 51
(张文毓. 电偶腐蚀与防护的研究进展 [J]. 全面腐蚀控制, 2018, 32(12): 51)
[11] Sburamanian G, Palraj S, Palanichamy S. Galvanic corrosion behaviour of aluminium 3004 and copper in tropical marine atmosphere [J]. J. Mar. Sci. Appl., 2014, 13: 230
doi: 10.1007/s11804-014-1244-z
[12] Cui T F, Liu D X, Shi P A, et al. Effect of stress and galvanic factors on the corrosion behave of aluminum alloy [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2018, 33: 688
doi: 10.1007/s11595-018-1879-8
[13] Su X. Corrosion behavior study of typical aluminum alloy in simulated marine atmospheric environment [D]. Handan: Hebei University of Engineering, 2013
(苏霄. 典型铝合金在模拟海洋大气环境中腐蚀规律研究 [D]. 邯郸: 河北工程大学, 2013)
[14] Bian G X, Chen Y L, Zhang Y, et al. Equivalent conversion coefficient of aluminum/titanium alloy between acidic NaCl solution with different concentration and water based on galvanic corrosion simulation [J]. Mater. Rev., 2019, 33: 2746
(卞贵学, 陈跃良, 张勇等. 基于电偶腐蚀仿真的铝/钛合金在不同浓度酸性NaCl溶液中与水介质中的当量折算系数 [J]. 材料导报, 2019, 33: 2746)
[15] Zhang Y, Chen Y L, Wang C G. Study on galvanic corrosion of aluminum alloy related joint in simulated coastal wet atmosphere [J]. Mater. Rev., 2016, 30(10): 152
(张勇, 陈跃良, 王晨光. 模拟沿海大气环境下铝合金搭接件电偶腐蚀行为研究 [J]. 材料导报, 2016, 30(10): 152)
[16] Mrema E, Itoh Y, Kaneko A. Galvanic corrosion of aluminium alloy members of bridge guiderails under severe atmospheric exposure conditions [J]. Corros. Eng. Sci. Technol., 2018, 54: 163
doi: 10.1080/1478422X.2018.1548410
[17] Srinath M K, Prasad M S G. Corrosion analysis of TiCN coated Al-7075 alloy for marine applications: a case study [J]. J. Inst. Energy, 2019, 100C: 371
[18] Chen Z F, Cui F, Kelly R G. Calculations of the cathodic current delivery capacity and stability of crevice corrosion under atmospheric environments [J]. J. Electrochem. Soc., 2008, 155: 360
[19] Mizuno D, Kelly R G. Galvanically induced intergranular corrosion of AA5083-H131 under atmospheric exposure conditions: Part 2—modeling of the damage distribution [J]. Corrosion, 2013, 69: 681
[20] Mizuno D, Shi Y, Kelly R. Modeling of galvanic interactions between AA5083 and steel under atmospheric condition [A]. COMSOL Conference [C]. Boston, 2011
[21] NACE. NACE StandardRP0775-2005 Standard Recommended Practice: Preparation, installation, analysis, and interpretation of corrosion coupons in oilfield operations [S]. Houston: NACE International
[22] Li Z Y, Xu H Y. Study on galvanic corrosion of AZ80 alloy and other alloys [J]. Hot Work. Technol., 2014, 43(8): 53
(李智勇, 徐宏妍. AZ80镁合金与异种合金的电偶腐蚀研究 [J]. 热加工工艺, 2014, 43(8): 53)
[23] Campbell S A, Radford G J W, Tuck C D S, et al Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
[24] Cui T F, Liu D X, Shi P A, et al. Effect of NaCl concentration, pH value and tensile stress on the galvanic corrosion behavior of 5050 aluminum alloy [J]. Mater. Corros., 2016, 67: 72
[25] Wang R N, Zhang P Z, Wang Y F, et al. Galvanic corrosion behaviour of hot‐dipped zinc-aluminum alloy coated titanium-aluminum couples [J]. Mater. Corros., 2015, 65: 913
[26] Hu Z J, An Z J, Zhu Z H, et al. Galvanic corrosion behavior of hub-bolt joint of magnesium alloy [J]. Corros. Prot., 2018, 39: 184
(胡志江, 安子军, 朱志华等. 镁合金轮毂螺栓连接的电偶腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 184)
[1] Fahe CAO, Xiaoyan LIU, Zejie ZHU, Zhenni YE, Pan LIU, Jianqing ZHANG. Mumeric Simulation and Gap Control of Scanning Electrochemical Microscopy and Its Application[J]. 中国腐蚀与防护学报, 2017, 37(5): 395-401.
[2] CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[3] LI Huiyan,DONG Chaofang,ZOU Shiwen,XIAO Kui,SUN Min,
ZHONG Ping,LI Xiaogang,. Corrosion Behavior of Ultra High Strength Steels in Different Single Mould Environments[J]. 中国腐蚀与防护学报, 2013, 33(2): 129-135.
No Suggested Reading articles found!