Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 805-812    DOI: 10.11902/1005.4537.2021.250
Current Issue | Archive | Adv Search |
Development and Performance of Phosphate-based Protective Insulation Coating for Non-oriented Electrical Steel
HU Xiongxin1, ZHANG Xian1(), LIU Jing1, WU Kaiming1(), LIN An2
1.Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Collaborative Innovation Center for Advanced Steels, The State Key Laboratory of Refractory Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China
Download:  HTML  PDF(10243KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A protective insulation coating for non-oriented electrical steel plate was developed with phosphate-based film forming agent, rare earth passivator and silane coupling agent as raw material. The microstructure, composition, electrochemical performance and resistance to salt spray testing of the coatings with different additives were characterized and assessed. The results show that adding rare earth passivator to the film forming agent can effectively fill the pores on the surface of coating. While the addition of silane coupling agent may be beneficial to the dispersive distribution the rare earth salt precipitates, thereby, resulting in a more uniform surface without obvious defects of the composite coating. The electrochemical test results show that the composite coating presents lower corrosion current density and larger polarization resistance. Taking the salt spray test results into consideration, it is evident that the composite coating has excellent corrosion resistance. In addition, the properties of the composite coating, such as interlayer resistance, adhesion, and pencil hardness are all higher than the requirements of the relevant industrial standards.

Key words:  electrical steel      phosphate coating      rare earth      silane      corrosion resistance     
Received:  22 September 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51601138);National Natural Science Foundation of China(51601137)
Corresponding Authors:  ZHANG Xian,WU Kaiming     E-mail:  xianzhang@wust.edu.cn;wukaiming@wust.edu.cn
About author:  WU Kaiming, E-mail: wukaiming@wust.edu.cn
ZHANG Xian, E-mail: xianzhang@wust.edu.cn

Cite this article: 

HU Xiongxin, ZHANG Xian, LIU Jing, WU Kaiming, LIN An. Development and Performance of Phosphate-based Protective Insulation Coating for Non-oriented Electrical Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 805-812.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.250     OR     https://www.jcscp.org/EN/Y2022/V42/I5/805

Fig.1  SEM images of (a, b) A, (c, d) B, (e, f) C and (g, h) D coating samples
Fig.2  SEM images (a) and EDS maps (b-d) of the cross section of the coating sample
Fig.3  Raman spectra of four coating samples
Fig.4  XPS spectra of four coating samples: A (a, e), B (b, f), C (c, g), D (d, h)
Fig.5  Potentiodynamic polarization plots of the bare steel and four coating samples
Samplei / μA·cm-2E / V
Bare NOES10.200-0.378
A3.890-0.316
B0.877-0.307
C0.715-0.301
D0.205-0.307
Table 1  Corrosion current density and corrosion potential of the bare steel and four coating samples
Fig.6  Nyquist and Bode plots of four coating samples: A (a~c), B (d~f), C (g~i), D (j~l)
Fig.7  Equivalent circuit for fitting EIS: (a) sample A for 1, 2 and 4 h, (b) sample B, sample C for 1, 2, 4 and 6 h, sample D for 1, 2, 4, 6 and 12 h
Fig.8  Evolution of the fitted Rp of four coating samples over immersion time
Fig.9  Images of bare steel (a) and A (b), B (c), C (d), D (e) and four coating samples in the neutral salt-spray test for 8 h
Experimental standardEvaluation standard

Industrial

standard

D sample
Inter-layer resistance (dry film) (Ω mm2/0.5 μm)GB/T 2522-2017 Methods of test for the determination of coating insulation resistance and coating adhesion of electrical strip and sheetGB/T 2522-20177001500

Corrosion resistance

(Neutral salty-spray) (h)

GB/T 10125-2012 Corrosion tests in artificial atmospheres-Salt spray testsGB/T 6461-2002 Methods for corrosion testing of metallic and other inorganic coatings on mtallic substrates-Rating of test speciments and manufactured articles subjected to corrosion tests68
Adhesion strengthGB/T 2522-2017 Methods of test for the determination of coating insulation resistance and coating adhesion of electrical strip and sheetGB/T 2522-2017AA
Pencil hardness (H)GB/T 6739-2006 Paints and varnishes-Determination of film hardness by pencil testGB/T 6739-200669
Table 2  Comprehensive performance test of D sample
1 Zhang Y X, Lan M F, Wang Y, et al. Microstructure and texture evolution of thin-gauge non-oriented silicon steel with high permeability produced by twin-roll strip casting [J]. Mater. Charact., 2019, 150: 118
doi: 10.1016/j.matchar.2019.02.001
2 Chen D M, Wang G D, Liu H T. The significance of hot rolled microstructure controlled by fine-tuning Al content to texture evolution and magnetic properties of low silicon non-oriented electrical steels [J]. J. Magn. Magn. Mater., 2021, 528: 167740
doi: 10.1016/j.jmmm.2021.167740
3 Lindenmo M, Coombs A, Snell D. Advantages, properties and types of coatings on non-oriented electrical steels [J]. J. Magn. Magn. Mater., 2000, 215/216: 79
4 Lin A, Zhang X, Fang D J, et al. Study of an environment-friendly insulating coating with high corrosion resistance on electrical steel [J]. Anti-Corros. Methods Mater., 2010, 57: 297
doi: 10.1108/00035591011087154
5 Sui L X, Yin C F, Li X C, et al. Preparation of a modified phosphate-based adhesive and its hot bonding performance on 316L stainless steel [J]. Ceram. Int., 2021, 47: 15585
doi: 10.1016/j.ceramint.2021.02.128
6 Liu F J, Yang M, Han B, et al. Development of T-ZnOw@Al2O3-incorporated low-temperature curing aluminium phosphate coating on Ti-6Al-4V alloy [J]. Ceram. Int., 2019, 45: 18406
doi: 10.1016/j.ceramint.2019.06.056
7 Chen C, Feng B, Hu S J, et al. Control of aluminum phosphate coating on mullite fibers by surface modification with polyethylenimine [J]. Ceram. Int., 2018, 44: 216
doi: 10.1016/j.ceramint.2017.09.161
8 Wagh A S, Jeong S Y. Chemically bonded phosphate ceramics: I, A dissolution model of formation [J]. J. Am. Ceram. Soc., 2003, 86: 1838
doi: 10.1111/j.1151-2916.2003.tb03569.x
9 Zhang Y, Gu H Z, Yang S, et al. Improved magnetic properties of grain-oriented silicon steel by in-situ formation of potassium zirconium phosphate in insulating coating [J]. J. Magn. Magn. Mater., 2020, 506: 166802
doi: 10.1016/j.jmmm.2020.166802
10 Hong L Y, Han H J, Ha H, et al. Development of Cr-free aluminum phosphate binders and their composite applications [J]. Compos. Sci. Technol., 2007, 67: 1195
doi: 10.1016/j.compscitech.2006.05.025
11 Chen D C, He L P, Shang S P. Study on aluminum phosphate binder and related Al2O3-SiC ceramic coating [J]. Mater. Sci. Eng., 2003, 348A: 29
12 Colonetti E, Kammer E H, De Noni Junior A. Chemically-bonded phosphate ceramics obtained from aluminum anodizing waste for use as coatings [J]. Ceram. Int., 2014, 40: 14431
doi: 10.1016/j.ceramint.2014.06.039
13 Arkles B. Tailoring surfaces with silanes [J]. Chemtech, 1977, 7: 766
14 Anyanwu J T, Wang Y R, Yang R T. Influence of water on amine loading for ordered mesoporous silica [J]. Chem. Eng. Sci., 2021, 241: 116717
doi: 10.1016/j.ces.2021.116717
15 Tiringer U, van Dam J P B, Abrahami S T, et al. Scrutinizing the importance of surface chemistry versus surface roughness for aluminium / sol-gel film adhesion [J]. Surf. Interface, 2021, 26: 101417
16 Hinton B R W, Wilson L. The corrosion inhibition of zinc with cerous chloride [J]. Corros. Sci., 1989, 29: 967
doi: 10.1016/0010-938X(89)90087-5
17 Hinton B R W, Arnott D R, Ryan N E. Cerium conversion coatings for the corrosion protection of aluminum [J]. Mater. Forum, 1986, 9: 162
18 Chen L A, Lu Y S, Lin Y T, et al. Preparation and characterization of cerium-based conversion coating on a Fe50Mn30Co10Cr10 dual-phase high-entropy alloy [J]. Appl. Surf. Sci., 2021, 562: 150200
doi: 10.1016/j.apsusc.2021.150200
19 Priyadarshini B, Ramya S, Shinyjoy E, et al. Structural, morphological and biological evaluations of cerium incorporated hydroxyapatite sol-gel coatings on Ti-6Al-4V for orthopaedic applications [J]. J. Mater. Res. Technol., 2021, 12: 1319
doi: 10.1016/j.jmrt.2021.03.009
20 Tschauner O. High-pressure minerals [J]. Am. Mineral., 2019, 104: 1701
doi: 10.2138/am-2019-6594
21 Kato T, Tsunazawa Y, Liu W Y, et al. Structural change analysis of cerianite in weathered residual rare earth ore by mechanochemical reduction using X-ray absorption fine structure [J]. Minerals, 2019, 9: 267
doi: 10.3390/min9050267
22 Colomban P. Review Raman studies of inorganic gels and of their sol-to-gel, gel-to-glass and glass-to-ceramics transformation [J]. J. Raman Specrosc., 1996, 27: 747
doi: 10.1002/(SICI)1097-4555(199610)27:10<747::AID-JRS38>3.0.CO;2-E
23 Riegel B, Blittersdorf S, Kiefer W, et al. Kinetic investigations of hydrolysis and condensation of the glycidoxypropyltrimethoxysilane/aminopropyltriethoxy-silane system by means of FT-Raman spectroscopy I [J]. J. Non-Cryst. Solids, 1998, 226: 76
doi: 10.1016/S0022-3093(97)00487-0
24 Stoch P, Stoch A, Ciecinska M, et al. Structure of phosphate and iron-phosphate glasses by DFT calculations and FTIR/Raman spectroscopy [J]. J. Non-Cryst. Solids, 2016, 450: 48
doi: 10.1016/j.jnoncrysol.2016.07.027
25 Premila M, Rajaraman R, Abhaya S, et al. Atmospheric corrosion of boron doped iron phosphate glass studied by Raman spectroscopy [J]. J. Non-Cryst. Solids, 2020, 530: 119748
doi: 10.1016/j.jnoncrysol.2019.119748
26 Karabulut M, Popa A, Berghian-Grosan C, et al. On the structural features of iron-phosphate glasses by Raman and EPR: observation of superparamagnetic behavior differences in HfO2 or CeO2 containing glasses [J]. J. Mol. Struct., 2019, 1191: 59
doi: 10.1016/j.molstruc.2019.04.086
[1] ZHANG Yuan, ZHANG Xian, CHEN Siyu, LI Teng, LIU Jing, WU Kaiming. Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[2] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[3] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[4] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[5] CHEN Xiaohan, ZHOU Jinhe, HU Jiming. Influence of Propylene Glycol on Hydrolytie Polyconden-sation of Tetramethoxysilane[J]. 中国腐蚀与防护学报, 2022, 42(5): 717-723.
[6] WEN Jiayuan, SONG Guihong, WEI Xiaoyuan, ZHAO Xin, WU Yusheng, DU Hao, HE Chunlin. Influence of Cr Content on Corrosion Resistance of Composite Ni/Ni-Cr/Ni-Cr-Al-Si Films on Cu[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[7] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[8] YU Shuaixian, WU Yajun, WU Haisheng, WU Liang, MA Yanlong, DENG Shengwei, SUN Lidong. Optimization of Titanate Modified Silane Coatings and Their Effect on Corrosion Resistance of 5056 Aluminum Foils[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[9] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[10] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[11] LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[12] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[13] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[14] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[15] SHAO Yinhua, WANG Jinlong, ZHANG Wei, ZHANG Jia, LI Ling, DU Xiran, CHEN Minghui, ZHU Shenglong, WANG Fuhui. High Temperature Oxidation Behavior of a Heat Resistant Magnesium Alloy Mg-14Gd-2.3Zn-Zr[J]. 中国腐蚀与防护学报, 2022, 42(1): 73-78.
No Suggested Reading articles found!