Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 135-142    DOI: 10.11902/1005.4537.2020.261
Current Issue | Archive | Adv Search |
Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas
LIU Jun1, GENG Yongjuan1, LI Shaochun1(), XU Ailing2, HOU Dongshuai1, LIU Ang1, LANG Xiulu2, CHEN Xu3, LIU Guofeng1
1.School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2.School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
3.China Construction Western Construction Company Limited Xinjiang Company, Urumqi 830000, China
Download:  HTML  PDF(10403KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composite emulsion of ethyl orthosilicate (TEOS) and isobutyltriethoxysilane (IBTS) was prepared by a sol-gel method. The TEOS/IBTS composite coating was applied on concrete surface, which then was placed on the marine tidal zone to experience biofouling process. The results show that the TEOS/IBTS composite coating provides a long-term hydrophobic effect on the concrete surface. Hence, it is difficult for marine microorganisms to adhere on the TEOS/IBTS composite coated concrete surface, thereby, the formation of a microbial membrane may be retarded. High-throughput DNA sequencing results show that the application of the TEOS/IBTS composite coating reduced the species richness and community diversity of microorganisms on the concrete surface. In particular, the abundance levels of Desulfobacterota and Firmicutes, which are prone to cause concrete corrosion, were significantly reduced. Furthermore, the bacterial community structure on concrete surface was improved. CLSM and SEM results show that the TEOS/IBTS composite coating improved the surface morphology and characteristics of the concrete, thereby reduced the fouling degree of the concrete in marine environment.

Key words:  composite coatings      marine exposure      microbial corrosion      silanes      concrete     
Received:  10 December 2020     
ZTFLH:  TU528  
Fund: National Natural Science Foundation of China(51778308);Open Fund of Jiangsu Provincial Key Laboratory of Civil Engineering Materials(CM2016-06)
Corresponding Authors:  LI Shaochun     E-mail:  lishaochun@qut.edu.cn
About author:  LI Shaochun, E-mail: lishaochun@qut.edu.cn

Cite this article: 

LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 135-142.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.261     OR     https://www.jcscp.org/EN/Y2022/V42/I1/135

TypeW/CCementSandMadacamWaterPCA
A0.438062712691521.46
B0.63006991191180---
Table 1  Mixing ratios of two test concretes (kg/m3)
Fig.1  Surface morphologies of the concrete block (w/c=0.4) uncoated (a1~a4) and coated (b1~b4) with TEOS/IBTS composite emulsion after exposure to the marine tide zone for 3 months (a1, b1), 6 months (a2, b2), 9 months (a3, b3) and 12 months (a4, b4)
Fig.2  Surface contact angles and surface energies of water drop on the surfaces of the blank (a, c) and coated (b, d) concrete blocks (w/c=0.4) after exposure for 3 months (a, b) and 12 months (c, d)
Fig.3  Relative abundances of bacterial diversities of concrete biofilms at the gate level for the concrete blocks with w/c=0.4 (a) and w/c=0.6 (b)
Exposure timeSampleSobsAceChaoShannonSimpsonCoverage
3A3KB3311587.42868.842.710.10690.996
A3TEOS220721.94528.452.580.14070.993
B3KB6621670.131208.263.150.11080.988
B3TEOS283853.40625.721.450.47030.994
6A6KB9531633.451356.464.860.02300.988
A6TEOS6901159.69978.214.580.02470.992
B6KB17072519.702510.895.540.01110.976
B6TEOS10541498.091520.894.800.02170.986
9A9KB21883305.933043.745.500.01050.974
A9TEOS17143155.682770.695.410.03290.970
B9KB26303630.483577.176.130.01010.966
B9TEOS16142321.482330.095.660.01030.979
12A12KB25533667.023536.946.080.01010.966
A12TEOS19293034.153051.395.450.01200.979
B12KB28743915.383863.116.480.00510.964
B12TEOS20213051.503082.935.300.02100.969
Table 2  Bacterial α-diversity indexes on the surface of the concrete block (w/c=0.4) after exposure for different time
Fig.4  CLSM images of biofilms on the concrete blocks (w/c=0.4) uncoated (a1~a4) and coated (b1~b4) with TEOS/IBTS composite emulsions after exposure to the marine tide zone for 3 months (a1, b1), 6 months (a2, b2), 9 months (a3, b3) and 12 months (a4, b4)
Fig.5  Percentages of adherent areas of live/dead cells on the surface of the concrete block (w/c=0.4) after exposure for different time: (a) dead cells, (b) live cells, (c) live and dead cells
Fig.6  Surface morphologies and corresponding EDS results of the blank (a, c) and coated (b, d) concrete blocks (w/c=0.4) after exposure for 3 months (a, b) and 12 months (c, d)
Fig.7  Diagram of the antifouling mechanism of TEOS/IBTS composite emulsion
1 Li Y F, Ning C Y. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling [J]. Bioact. Mater., 2019, 4: 189
2 Tribollet B. Microbiologically influenced corrosion (MIC) in nuclear power plant systems and components [A]. Féron D. Nuclear Corrosion Science and Engineering [M]. Philadelphia: Woodhead Pub., 2012: 230
3 Hou B R, Lu D Z. Corrosion cost and preventive strategies in China [J]. Bull. Chin. Acad. Sci., 2018, 33: 601
侯保荣, 路东柱. 我国腐蚀成本及其防控策略 [J]. 中国科学院院刊, 2018, 33: 601
4 Wei S P, Sanchez M, Trejo D, et al. Microbial mediated deterioration of reinforced concrete structures [J]. Int. Biodeterior. Biodegrad., 2010, 64: 748
5 Ann K Y, Song H W. Chloride threshold level for corrosion of steel in concrete [J]. Corros. Sci., 2007, 49: 4113
6 Yi Y, Zhu D J, Guo S C, et al. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment [J]. Cem. Concr. Compos., 2020, 113: 103695
7 George R P, Vishwakarma V, Samal S S, et al. Current understanding and future approaches for controlling microbially influenced concrete corrosion: A review [J]. Concr. Res. Lett., 2012, 3: 491
8 Gaylarde C, Silva M R, Warscheid T. Microbial impact on building materials: An overview [J]. Mater. Struct., 2003, 36: 342
9 Parker C D. The corrosion of concrete 1. the isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide [J]. Aust. J. Exp. Biol. Med. Sci., 1945, 23: 81
10 Fang J, Kong L J, Zhang B. Application effect of surface coating on concrete anti-sewage corrosion [A]. Abstracts of the 3rd China International Composite Materials Science and Technology Conference-Session 6-10 [C]. Hangzhou, 2017: 1
方珺, 孔丽娟, 张蓓. 表面涂层对混凝土抗污水腐蚀的应用效果 [A]. 第三届中国国际复合材料科技大会摘要集-分会场6-10 [C]. 杭州, 2017: 1
11 Lv J F, Li J, Mo Z L, et al. Microorganism identification by 16S rDNA of concrete surface exposed to a tidal zone [J]. J. Harbin Eng.Univ., 2010, 31: 1386
吕建福, 李杰, 莫照兰等. 海洋潮差区混凝土表面微生物16S rDNA分子鉴定 [J]. 哈尔滨工程大学学报, 2010, 31: 1386
12 Lv J F, Ba H J. Splash zone concrete of marine concrete engineering by SEM and surface microorganism identification by 16S rRNA [J]. J. Wuhan Univ. Technol., 2009, 31(2): 28
吕建福, 巴恒静. 海洋浪溅区混凝土SEM及表面微生物16S rRNA鉴定 [J]. 武汉理工大学学报, 2009, 31(2): 28
13 Zuo R J. Biofilms: Strategies for metal corrosion inhibition employing microorganisms [J]. Appl. Microbiol. Biotechnol., 2007, 76: 1245
14 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
15 Gao L X, Ding R Q, Yao Y, et al. Microbial-induced corrosion of concrete: Mechanism, influencing factors, evaluation indices, and proventive techniques [J]. Mater. Rep., 2008, 32: 503
高礼雄, 丁汝茜, 姚燕等. 混凝土的微生物腐蚀: 机理、影响因素、评价指标及防护技术 [J].材料导报, 2018, 32: 503
16 Wong L S, Oweida A F M, Kong S Y, et al. The surface coating mechanism of polluted concrete by Candida ethanolica induced calcium carbonate mineralization [J]. Const. Build. Mater., 2020, 257: 119482
17 Elnaggar E M, Elsokkary T M, Shohide M A, et al. Surface protection of concrete by new protective coating [J]. Const. Build. Mater., 2019, 220: 245
18 Li S C, Zhang W J, Liu J, et al. Protective mechanism of silane on concrete upon marine exposure [J]. Coatings, 2019, 9: 558
19 Chen X. Preparation of TEOS isobutyl triethoxysilane compound emulsion and its effect on the properties of cement based material durability [D]. Qingdao: Qingdao Technological University, 2016
陈旭. TEOS/异丁基三乙氧基硅烷复合乳液的制备及其对水泥基材料耐久性能的影响 [D]. 青岛: 青岛理工大学, 2016
20 Zhao W J, Chen Z F, Mo M T, et al. Progress in surface tailoring for enviromentfriendly antibiofouling materials [J]. China Surf. Eng., 2014, 27(5): 14
赵文杰, 陈子飞, 莫梦婷等. 绿色海洋防污材料的表面构筑研究进展 [J]. 中国表面工程, 2014, 27(5): 14
21 Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools [J]. Nucleic Acids Res., 2013, 41(D1): D590
22 Kuczynski J, Stombaugh J, Walters W A, et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities [J]. Curr. Protoc. Bioinform. 2012, Chapter: 1
23 Dubosc A, Escadeillas G, Blanc P J. Characterization of biological stains on external concrete walls and influence of concrete as underlying material [J]. Cem. Concr. Res., 2001, 31: 1613
24 Giannantonio D J, Kurth J C, Kurtis K E, et al. Effects of concrete properties and nutrients on fungal colonization and fouling [J]. Int. Biodeterior. Biodegrad., 2009, 63: 252
25 Ito T, Okabe S, Satoh H, et al. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions [J]. Appl. Environ. Microbiol., 2002, 68: 1392
26 Jørgensen B B, Bak F. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark) [J]. Appl. Environ. Microbiol., 1991, 57: 847
27 Okabe S, Santegoeds C M, Watanabe Y, et al. Successional development of sulfate-reducing bacterial populations and their activities in an activated sludge immobilized agar gel film [J]. Biotechnol. Bioeng., 2002, 78: 119
[1] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[2] TANG Rongmao, LIU Guangming, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu, LIU Yongqiang. Inhibition and Adsorption Behavior of Sodium Dodecyl-benzene Sulfonate on Q235 Steel in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[3] LUO Weiwen, JI Tao, LIN Kui. Influence of Cement Type on Deterioration of Sea Sand Concrete Subjected to Corrosion of Biological Sulfuric Acid[J]. 中国腐蚀与防护学报, 2021, 41(5): 691-696.
[4] CHEN Xuandong, ZHANG Qing, GU Xin, LI Xing. Probability Analysis on Service Life Prediction of Reinforced Concrete Structures[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[5] ZHU Zhe, CAI Jingshun, HONG Jinxiang, MU Song, ZHOU Xiaocheng, MA Qi, CHEN Cuicui. Effect of Hydration Response Nanomaterials on Corrosion Resistance of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2021, 41(5): 732-736.
[6] DING Qingmiao, GAO Yuning, HOU Wenliang, QIN Yongxiang. Influence of Cl- Concentration on Corrosion Behavior of Reinforced Concrete in Soil[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[7] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[8] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[9] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[10] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[11] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[12] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[13] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[15] Xuekai TIAN, Hailong WANG, Xudong CHENG, Xiaoyan SUN. Effect of Crack Characteristics on Chloride Transport in Concrete: An Overview[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
No Suggested Reading articles found!