Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 798-804    DOI: 10.11902/1005.4537.2021.270
Current Issue | Archive | Adv Search |
Corrosion Survey of Subway Rails in Typical Tunnel Environments at Wuhan Region of Central China
PANG Tao1,2, LIU Jing1(), HUANG Feng1, LI Chuang3, ZHAO Guozhi2, HUANG Xianqiu2, ZHENG Jianguo2, CHENG Peng2
1.The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Central Research Institute, BaoShan Iron&Steel Co. Ltd., Wuhan 430081, China
3.Metal & Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
Download:  HTML  PDF(8587KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A corrosion survey was made for the subway rails at Wuhan city of Central China, focusing especially on the corrosion related environments in tunnels of subway stations in service or under construction. The chemical composition of the collected water samples, the microstructure and phase constituents of corrosion products on subway rails were examined. The results show that according to the difference in the corrosion degree of subway rails and the quality of relevant waters collected from various tunnels, the corrosion environments encountered for the subway rails can be divided into four categories: humid atmosphere, sewage immersion, cement mortar as cover, and stray current. As the subway rails in service or storage in the above four types of environments, the corrosion degree of the rails is different: in the humid atmosphere, the formed corrosion products on rails (in service) are compact and stable with protectiveness to certain extent; in the condition of sewage soaking and cement mortar as cover, the rails (under construction) experienced local bubbled corrosion and uniform corrosion with the participation of Cl-; while the stray current induced corrosion (in use) can directly cause the damage of the rail bottom, which is the fastest and the most severe corrosion of the subway rails, what we've seen up to now. In view of the corrosion of rails in different environments, the corresponding protection measures are also put forward.

Key words:  rail      subway tunnel environment      local corrosion      stray current corrosion     
Received:  09 October 2021     
ZTFLH:  TG174  
Fund: Scientific Research Project China Academy of Railway Sciences Corporation Limited(2019YJ093)
Corresponding Authors:  LIU Jing     E-mail:  liujing@wust.edu.cn
About author:  LIU Jing, E-mail: liujing@wust.edu.cn

Cite this article: 

PANG Tao, LIU Jing, HUANG Feng, LI Chuang, ZHAO Guozhi, HUANG Xianqiu, ZHENG Jianguo, CHENG Peng. Corrosion Survey of Subway Rails in Typical Tunnel Environments at Wuhan Region of Central China. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 798-804.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.270     OR     https://www.jcscp.org/EN/Y2022/V42/I5/798

Environment typeEnvironmental corrosion factorWater qualityLocationCorrosion degree
Humid atmosphereAtmospheric corrosion, temperature 10-30 ℃, humidity 70%-90%RHNeutral electrolyteIn most operating sections, the rails do not directly contact waterLight corrosion
Sewage immersionConstruction sewage, airNear neutral electrolyte containing Cl- and SO42-Low-lying prone to water section in the tunnelLight corrosion and local corrosion
Cement mortar overlayPortland cement, water, airalkaline electrolyte containing Cl-The section where lay the rail before pouring the concreteOverall corrosion of the rail surface, destroyed oxide scale
Stray currentCurrent, deposited salts, cement or other electrolytesNeutral electrolyteLong operation years, water leakage in the tunnel, sand and stones at the bottom of the rail or electrolyte accumulationRail bottom defect, damaged integrity, severe corrosion
Table 1  Summary of the characteristics of subway service environmental factors
Fig.1  Macro morphologies of rail waist (a), rail bottom (b) for 5 a and overall morphology (c) of trail for 3 a in Humid atmosphere corrosive environmen
Fig.2  Macro morphologies of rail bottom (a) and immersed rail (b) in sewage immersion corrosion environment
Fig.3  Microscopic morphologies of the corrosion products in the corrosion pit soaked in sewage
Fig.4  Microscopic morphology and composition analysis of corrosion products in sewage immersion pits
Fig.5  Microstructures and EDS pattens of spalling corrosion products on the surface of cement mortar covered rail outer (a) and inner (b) and inner dark globule (c)
Fig.6  Macro morphologies of rail (a) and rail surface rust (b) in cement mortar covers environment
Fig.7  Defective appearance of rail footings corroded by stray currents left stock (a) and right stock (b) rail
Fig.8  Schematic diagram of rail corrosion in humid air environment: (a) water and oxygen contact the substrate through the oxide layer on the rail surface, (b) substrate under the oxide layer is corroded, (c) toxide layer is gradually converted into the rust layer
Fig.9  Schematic diagram of rail corrosion in sewage immersion environment: (a) corrosive medium containing chloride ion and sulfate radical reacts with the oxide layer and substrate at the defect site of the oxide layer, (b) concentration of stress in the rust layer produces local bubbling
Fig.10  Schematic diagram of rail corrosion of cement covered environmental: (a) corrosive ions, oxygen and water contact the rail surface through concrete, resulting in comprehensive corrosion of the oxide layer and substrate, (b) the corrosion products at the junction of substrate and oxide layer are γ-FeOOH and spherical Ca(OH)2
1 Wang X L, An S L, Cao Z. Advances in corrosion resistance for heavy rail steel [J]. J. Inner Mongolia Univ. Sci. Technol., 2016, 35: 205
王晓丽, 安胜利, 曹峥. 耐腐蚀重轨钢研究进展 [J]. 内蒙古科技大学学报, 2016, 35: 205
2 He Q Q. Domestic and overseas rail anti-corrosion methods and development trends [J]. China Steel, 2020, (6): 32
何琴琴. 国内外钢轨防腐蚀方法及发展动态 [J]. 中国钢铁业, 2020, (6): 32
3 Luo Y X, Zhang Z W, Guo J A, et al. Analysis on corrosion mechanism for railways of Guangzhou Railway (Group) company [J]. J. Railw. Sci. Eng., 2011, 8(3): 78
罗虞霞, 张志伟, 郭吉安 等. 广铁管内钢轨的腐蚀机理探讨 [J]. 铁道科学与工程学报, 2011, 8(3): 78
4 Isozaki H, Oosawa J, Kawano Y, et al. Measures against electrolytic rail corrosion in Tokyo metro subway tunnels [J]. Procedia Eng., 2016, 165: 583
doi: 10.1016/j.proeng.2016.11.754
5 Hernández F C R, Plascencia G, Koch K. Rail base corrosion problem for North American transit systems [J]. Eng. Failure Anal., 2009, 16: 281
doi: 10.1016/j.engfailanal.2008.05.011
6 Yin T, Shi Y H, Huang Y J. Guangzhou metro station encountered a problem of corrosion of groundwater [J]. Guangdong Archit. Civ. Eng., 2015, 22(9): 50
尹涛, 石玉华, 黄永健. 广州地铁某站所遇地下水腐蚀性问题浅析 [J]. 广东土木与建筑, 2015, 22(9): 50
7 Cao Q, Liu J W. Analysis on statistics of groundwater corrosion in Shenzhen metro line 11 [J]. J. Shanghai Inst. Technol. (Nat. Sci.), 2016, 16: 147
曹权, 刘健炜. 深圳地铁11号线地下水侵蚀性统计分析 [J]. 上海应用技术学院学报 (自然科学版), 2016, 16: 147
8 Xiao F. Review on research of rail corrosion and protection [J]. Equip. Manuf. Technol., 2016, (4): 157
肖锋. 钢轨腐蚀与防护研究述评 [J]. 装备制造技术, 2016, (4): 157
9 Fan D. Research on the corrosion and aging behavior of typical high-speed railway bodywork materials in the main atmosphere in China [D]. Beijing: China Academy of Machinery Science and Technology, 2016
樊栋. 高铁车体典型材料在我国主要大气环境中的腐蚀及老化行为研究 [D]. 北京: 机械科学研究总院, 2016
10 Ren A C, Zhu M, Fei J J, et al. Early corrosion mechanism of U75V and U68CrCu rail steel [J]. China Railw. Sci., 2014, 35(5): 7
任安超, 朱敏, 费俊杰 等. U75V和U68CrCu钢轨钢早期腐蚀机理研究 [J]. 中国铁道科学, 2014, 35(5): 7
11 Shang C J, Wang X M, Yang S W, et al. Refinement of packet size in low carbon Bainitic steel by special thermo-mechanical control process [J]. J. Univ. Sci. Technol. Beijing, 2004, 11: 221
12 Kang F F. Synthesis of chrysanthemum-like akaganeite and its adsorption for crazure S [D]. Shijiazhuang: Hebei Normal University, 2016
康菲菲. 菊花状β-FeOOH的制备及其对铬天青S的吸附研究 [D]. 石家庄: 河北师范大学, 2016
13 Chen H L, Li X J, Wei Y. Corrosion mechanism of carbon steel in chloride solution [J]. Corros. Prot., 2007, 28: 17
陈惠玲, 李晓娟, 魏雨. 碳钢在含氯离子环境中腐蚀机理的研究 [J]. 腐蚀与防护, 2007, 28: 17
14 Liu X Y, Zhao Y Z, Zhang H, et al. Effect of chloride concentration in a simulated concrete pore solution on metastable pitting of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 195
刘欣怡, 赵亚州, 张欢 等. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 195
15 Chen C M. Micro-analysis on oxide scale of U75V hot rolled rail [J]. Iron Steel Vanadium Titanium, 2018, 39(3): 165
陈崇木. U75V热轧钢轨表面氧化铁皮显微分析 [J]. 钢铁钒钛, 2018, 39(3): 165
16 Wu S J. The pearlite structure has great resistance to U71Mn heavy rail steel Effect of gas corrosion [D]. Baotou: Inner Mongolia University of Science & Technology, 2020
吴世杰. 珠光体组织对U71Mn重轨钢抗大气腐蚀的影响 [D]. 包头: 内蒙古科技大学, 2020
17 Han J K, Yan H, Huang Y, et al. Structural features of oxide scales on weathering steel and their influence on atmospheric corrosion [J]. Acta Metall. Sin., 2017, 53: 163
韩军科, 严红, 黄耀 等. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响 [J]. 金属学报, 2017, 53: 163
18 Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
李子运, 王贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 40: 463
19 Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transitions in rust layers [J]. Corros. Sci., 1983, 23: 969
doi: 10.1016/0010-938X(83)90024-0
20 Zhang Y W, Guo T M, Song Z T, et al. Corrosion behavior of Q345q steel with oxide scale in simulated typical atmospheric environment in northwest China [J]. Chin. J. Mater. Res., 2019, 33: 749
张延文, 郭铁明, 宋志涛 等. 带氧化皮Q345q钢在模拟西北典型大气环境中的腐蚀行为研究 [J]. 材料研究学报, 2019, 33: 749
doi: 10.11901/1005.3093.2019.088
21 Li K Q, Yang L J, Xu Y Z, et al. Influence of SO4 2- on the corrosion behavior of Q235B steel bar in simulated pore solution [J]. Acta Metall. Sin., 2019, 55: 457
李恺强, 杨璐嘉, 徐云泽 等. SO4 2-对模拟孔隙液中Q235B钢筋腐蚀行为的影响 [J]. 金属学报, 2019, 55: 457
doi: 10.11900/0412.1961.2018.00475
22 Gu R K. Corrosion behavior of reinforcing steel with different surface states in concrete containing chloride [D]. Baotou: Inner Mongolia University of Science & Technology, 2013
谷荣坤. 不同表面状态钢筋在含氯混凝土中腐蚀行为研究 [D]. 包头: 内蒙古科技大学, 2013
23 Lv S J, Cheng X Q, Duan Z G, et al. Effect of chloride ion content in circulating water on the corrosion behavior of carbon steel [J]. Pet. Process. Petrochem., 2011, 42(3): 84
吕胜杰, 程学群, 段振国 等. 循环水中氯离子含量对碳钢腐蚀行为影响规律的研究 [J]. 石油炼制与化工, 2011, 42(3): 84
24 Gan L. Corrosion behavior of high-strength corrosion resistant rebar in a solution of chlorine salt [D]. Maanshan: Anhui University of Technology, 2017
甘玲. 高强耐蚀钢筋在氯盐环境下的腐蚀行为 [D]. 马鞍山: 安徽工业大学, 2017
25 Xie W C. Study on the corrosion behavior of carbon steel and environment-friendly inhibitors in simulated concrete solution containing chloride [D]. Guangzhou: South China University of Technology, 2017
谢婉晨. 含Cl-混凝土模拟液中碳钢腐蚀及环保型缓蚀剂研究 [D]. 广州: 华南理工大学, 2017
[1] LV Xianghong, MA Xiaofeng, HU Zhaowei, LI Yuanyuan, WANG Chen. Corrosion Behavior of T/S-52K Straight Seam Pipeline Steel in Solutions of Different NaCl Concentration[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[2] SHI Weining,YANG Shufeng,LI Jingshe. Correlation Between Cr-depleted Zone and Local Corrosion in Stainless Steels: A Review[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.
[3] Wei LI,Yanxia DU,Zitao JIANG,Minxu LU. Research Progress on AC Interference of Electrified Railway on Buried Pipeline[J]. 中国腐蚀与防护学报, 2016, 36(5): 381-388.
[4] LIU Shiqiang, WANG Lida, ZONG Qiufeng, ZHANG Cheng, LIU Guichang. Electrochemical Noise Analysis of Local Pitting Corrosion Behavior of Pure Aluminum[J]. 中国腐蚀与防护学报, 2014, 34(2): 160-164.
[5] . The Study on the Underscales Localized Corrosion Behavior of Carbon Steel in Neutral Solution[J]. 中国腐蚀与防护学报, 2008, 28(5): 271-276 .
[6] Xiaogang Li; Dongmei Fu; Chaofang Dong; Lin Liu. THE FITNESS-FOR-SERVICE SOFTWARE SYSTEM FOR LOCAL CORROSION THIN ZONE〖ST〗〖HT〗〖WT〗〖KH1D〗[J]. 中国腐蚀与防护学报, 2002, 22(1): 18-21 .
[7] LI Jin-xu WANG Yan-bin CHU Wu-yang(University of Science and Technology Beijing; Beijing 100083)MEI Dong-sheng YU Meng-wen (Panzhihna Iron and Steel Co.; Panzhihua 710076). EFFECT OF ALLOYING ELEMENT VANADIUM ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY FOR RAIL STEEL[J]. 中国腐蚀与防护学报, 1998, 18(2): 113-118.
[8] HUANG Changhe LI Jinxu WANG Yanbin CHU Wuyang (University of Science and Technology Beijing 100083)MEI Dongsheng YU Mengwen JI Kebin (Panzhihua Iron and steel Co. Panzhihua 710076). HYDROGEN DAMAGE AND HYDROGEN-INDUCED CRACKING FOR RAIL STEEL[J]. 中国腐蚀与防护学报, 1997, 17(2): 129-134.
No Suggested Reading articles found!