Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 873-878    DOI: 10.11902/1005.4537.2021.249
Current Issue | Archive | Adv Search |
Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings
PEI Shubo1, WAN Dongyang2, ZHOU Ping2, CAO Guoqin1(), HU Junhua1
1.School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2.Naval Research Institute of PLA, Beijing 102442, China
Download:  HTML  PDF(562KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This article summarizes the important preparation methods of high-entropy alloy coating in recent years, focusing on the influence of magnetron sputtering and laser cladding preparation parameters on the structure and performance of coatings. The alloying process and the role of special elements are discussed in detail, especially in terms of the corrosion resistance and oxidation resistance of the acquired high-entropy coatings. The relevant mechanisms of coating failures were interpreted from physical and chemical aspects, and the reasons why high-entropy coating has excellent oxidation resistance were also summarized briefly, furthermore, the key problems that may be faced and still to be solved for the application of this kind of coatings in special working conditions such as marine engineering and aerospace etc. are discussed in detail. On this basis, the future research trend of high entropy alloy coatings is prospected.

Key words:  high entropy coating      magnetron sputtering      laser cladding      corrosion resistance      high temperature oxidation     
Received:  22 September 2021     
ZTFLH:  TG174  
Corresponding Authors:  CAO Guoqin     E-mail:  caoguoqin@zzu.edu.cn
About author:  CAO Guoqin, E-mail: caoguoqin@zzu.edu.cn

Cite this article: 

PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 873-878.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.249     OR     https://www.jcscp.org/EN/Y2022/V42/I5/873

1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
2 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
3 Guo S, Liu C T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci. Mater. Int., 2011, 21: 433
doi: 10.1016/S1002-0071(12)60080-X
4 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
5 Wu K K, Yao H H, Cheng X, et al. Oxidation behavior and chemical evolution of architecturally arranged Zr/Si multilayer at high temperature [J]. Surf. Coat. Technol., 2020, 399: 126205
doi: 10.1016/j.surfcoat.2020.126205
6 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
7 Qin Q D, Qu J B, Hu Y E, et al. Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy [J]. Int. J. Miner. Metall. Mater., 2018, 25: 1286
8 Worner H K. The cost of corrosion [J]. Anti-Corros. Methods Mater., 1956, 3: 289
doi: 10.1108/eb019217
9 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74
doi: 10.1002/adem.200300507
10 Cao G Q, Yang L, Yuan G H, et al. Chemical diversity of iron species and structure evolution during the oxidation of C14 Laves phase Zr(Fe,Nb)2 in subcritical environment [J]. Corros. Sci., 2020, 162: 108218
doi: 10.1016/j.corsci.2019.108218
11 Wei L, Liu Y, Li Q, et al. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5wt.%NaCl solution [J]. Corros. Sci., 2019, 146: 44
doi: 10.1016/j.corsci.2018.10.025
12 Wang Z C, Seyeux A, Zanna S, et al. Chloride-induced alterations of the passive film on 316L stainless steel and blocking effect of pre-passivation [J]. Electrochim. Acta, 2020, 329: 135159
doi: 10.1016/j.electacta.2019.135159
13 Ren Y Y, Yao H H, Hu J H, et al. Evolution of "spinodal decomposition"-like structures during the oxidation of Zr(Fe,Nb)2 under subcritical environment [J]. Scr. Mater., 2020, 187: 107
doi: 10.1016/j.scriptamat.2020.06.018
14 Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review [J]. Metals, 2017, 7: 43
doi: 10.3390/met7020043
15 Cao G Q, Yun Y F, Xu H J, et al. A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion [J]. Corros. Sci., 2019, 152: 54
doi: 10.1016/j.corsci.2019.03.009
16 Chen L J, Zheng Z, Tan Z, et al. High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys [J]. J. Alloy. Compd., 2018, 764: 845
doi: 10.1016/j.jallcom.2018.06.036
17 Li T S, Swanson O J, Frankel G S, et al. Localized corrosion behavior of a single-phase non-equimolar high entropy alloy [J]. Electrochim. Acta, 2019, 306: 71
doi: 10.1016/j.electacta.2019.03.104
18 Li J C, Huang Y X, Meng X C, et al. A review on high entropy alloys coatings: fabrication processes and property assessment [J]. Adv. Eng. Mater., 2019, 21: 1900343
doi: 10.1002/adem.201900343
19 Cao G Q, Yun Y F, Yang L, et al. The formation and stacking faults of Fe and Cr containing Laves phase in Zircaloy-4 alloy [J]. Mater. Lett., 2017, 191: 203
doi: 10.1016/j.matlet.2016.12.062
20 Chi Y M, Gu G C, Yu H J, et al. Laser surface alloying on aluminum and its alloys: A review [J]. Opt. Lasers Eng., 2018, 100: 23
doi: 10.1016/j.optlaseng.2017.07.006
21 Zhang M N, Zhou X L, Yu X N, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding [J]. Surf. Coat. Technol., 2017, 311: 321
doi: 10.1016/j.surfcoat.2017.01.012
22 Liu J, Liu H, Chen P J, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTi x high-entropy alloy coatings fabricated by laser cladding [J]. Surf. Coat. Technol., 2019, 361: 63
doi: 10.1016/j.surfcoat.2019.01.044
23 Qiu X W, Zhang Y P, He L, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy [J]. J. Alloy. Compd., 2013, 549: 195
doi: 10.1016/j.jallcom.2012.09.091
24 Zhang W, Tang R, Yang Z B, et al. Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding [J]. Surf. Coat. Technol., 2018, 347: 13
doi: 10.1016/j.surfcoat.2018.04.037
25 Karimi M A, Shamanian M, Enayati M H. Microstructural and mechanical properties assessment of transient liquid phase bonding of CoCuFeMnNi high entropy alloy [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3063
doi: 10.1016/S1003-6326(21)65715-1
26 Wang H D, Liu J N, Xing Z G, et al. Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films [J]. Surf. Eng., 2020, 36: 78
doi: 10.1080/02670844.2019.1625127
27 Tsai D C, Chang Z C, Kuo L Y, et al. Oxidation resistance and structural evolution of (TiVCrZrHf)N coatings [J]. Thin Solid Films, 2013, 544: 580
doi: 10.1016/j.tsf.2012.12.064
28 Ye F X, Jiao Z P, Yan S, et al. Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of Al x CoCrFe MnNi high-entropy alloy cladding layer [J]. Vacuum, 2020, 174: 109178
doi: 10.1016/j.vacuum.2020.109178
29 Fanicchia F, Csaki I, Geambazu L E, et al. Effect of microstructural modifications on the corrosion resistance of CoCrFeMo0.85Ni compositionally complex alloy coatings [J]. Coatings, 2019, 9: 695
doi: 10.3390/coatings9110695
30 Anupam A, Kumar S, Chavan N M, et al. First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation [J]. J. Mater. Res., 2019, 34: 796
doi: 10.1557/jmr.2019.38
31 Aliyu A, Srivastava C. Microstructure-corrosion property correlation in electrodeposited AlCrFeCoNiCu high entropy alloys-graphene oxide composite coatings [J]. Thin Solid Films, 2019, 686: 137434
doi: 10.1016/j.tsf.2019.137434
32 Aliyu A, Srivastava C. Microstructure and corrosion performance of AlFeCoNiCu high entropy alloy coatings by addition of graphene oxide [J]. Materialia, 2019, 8: 100459
doi: 10.1016/j.mtla.2019.100459
33 Li Y F, Chen C, Han T F, et al. Microstructures and oxidation behavior of NiCrAlCoY-Al composite coatings on Ti-6Al-4V alloy substrate via high-energy mechanical alloying method [J]. J. Alloy. Compd., 2017, 697: 268
doi: 10.1016/j.jallcom.2016.10.171
34 Cui Z Q, Qin Z, Dong P, et al. Microstructure and corrosion properties of FeCoNiCrMn high entropy alloy coatings prepared by high speed laser cladding and ultrasonic surface mechanical rolling treatment [J]. Mater. Lett., 2020, 259: 126769
doi: 10.1016/j.matlet.2019.126769
35 Shang C Y, Axinte E, Sun J, et al. CoCrFeNi(W1- x Mo x ) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater. Des., 2017, 117: 193
doi: 10.1016/j.matdes.2016.12.076
36 Huang K J, Lin X, Wang Y Y, et al. Microstructure and corrosion resistance of Cu0·9NiAlCoCrFe high entropy alloy coating on AZ91D magnesium alloys by laser cladding [J]. Mater. Res. Innov., 2014, 18: S2-1008
37 Shu F Y, Tian Y, Jiang S S, et al. Effect of rare earth oxide CeO2 on microstructure and surface properties of laser cladded CoFeCrNiSiB high-entropy alloy coatings [J]. Mater. Res. Express, 2019, 6: 106517
doi: 10.1088/2053-1591/ab3589
38 Chen S Y, Cai Z B, Lu Z X, et al. Tribo-corrosion behavior of VAlTiCrCu high-entropy alloy film [J]. Mater. Charact., 2019, 157: 109887
doi: 10.1016/j.matchar.2019.109887
39 Li X C, Zheng Z Y, Dou D, et al. Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering [J]. Mater. Res., 2016, 19: 802
doi: 10.1590/1980-5373-MR-2015-0536
40 Wu S K, Pan Y, Wang N, et al. Azo dye degradation behavior of AlFeMnTiM (M=Cr, Co, Ni) high-entropy alloys [J]. Int. J. Miner. Metall. Mater., 2019, 26: 124
doi: 10.1007/s12613-019-1716-x
41 Qiu X W. Structure and electrochemical properties of laser cladding Al2CoCrCuFeNiTi x high-entropy alloy coatings [J]. Met. Mater. Int., 2020, 26: 998
doi: 10.1007/s12540-019-00411-2
42 Ye Q F, Feng K, Li Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating [J]. Appl. Surf. Sci., 2017, 396: 1420
doi: 10.1016/j.apsusc.2016.11.176
43 Wu C L, Zhang S, Zhang C H, et al. Phase evolution and properties in laser surface alloying of FeCoCrAlCuNi x high-entropy alloy on copper substrate [J]. Surf. Coat. Technol., 2017, 315: 368
doi: 10.1016/j.surfcoat.2017.02.068
44 Li D L, Zhou F, Yu S H. Microstrucrure and corrosion resistance of FeCrNiMnMo x B0.5 high entropy alloy coating prepared by laser cladding [J]. High Power Laser Part. Beams, 2016, 28: 029001
45 Shang C Y, Axinte E, Ge W J, et al. High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering [J]. Surf. Interf., 2017, 9: 36
46 Chang F, Cai B J, Zhang C, et al. Thermal stability and oxidation resistance of FeCr x CoNiB high-entropy alloys coatings by laser cladding [J]. Surf. Coat. Technol., 2019, 359: 132
doi: 10.1016/j.surfcoat.2018.12.072
47 Cai Y C, Zhu L S, Cui Y, et al. High-temperature oxidation behavior of FeCoCrNiAl x high-entropy alloy coatings [J]. Mater. Res. Express, 2019, 6: 126552
doi: 10.1088/2053-1591/ab562d
[1] ZHANG Qin, LIANG Taosha, WANG Wen, ZHAO Langlang, JIANG Yuefeng. Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[2] ZHANG Yuan, ZHANG Xian, CHEN Siyu, LI Teng, LIU Jing, WU Kaiming. Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[3] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[4] HU Xiongxin, ZHANG Xian, LIU Jing, WU Kaiming, LIN An. Development and Performance of Phosphate-based Protective Insulation Coating for Non-oriented Electrical Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[5] XIE Leipeng, CHEN Minghui, WANG Jinlong, WANG Fuhui. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[6] WEN Jiayuan, SONG Guihong, WEI Xiaoyuan, ZHAO Xin, WU Yusheng, DU Hao, HE Chunlin. Influence of Cr Content on Corrosion Resistance of Composite Ni/Ni-Cr/Ni-Cr-Al-Si Films on Cu[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[7] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[8] YU Shuaixian, WU Yajun, WU Haisheng, WU Liang, MA Yanlong, DENG Shengwei, SUN Lidong. Optimization of Titanate Modified Silane Coatings and Their Effect on Corrosion Resistance of 5056 Aluminum Foils[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[9] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[10] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[11] QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[12] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[13] LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[14] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[15] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
No Suggested Reading articles found!