Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 301-308    DOI: 10.11902/1005.4537.2021.088
Current Issue | Archive | Adv Search |
Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance
DAI Weili1,2(), WANG Jinghang1, LUO Shuai1, DU Ning1, LIU Fan1, XU Lidong1, ZHANG Jun1, SONG Yuehong1,2, LIU Yanfeng1,2,3
1.Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo University, Shangluo 726000, China
2.Shaanxi Engineering Research Center for Mineral Resources Clean & Efficient Conversion and New Materials, Shangluo University, Shangluo 726000, China
3.School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Download:  HTML  PDF(9884KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hydrophobic surface film on AM60 Mg-alloy was prepared by chemical etching, and then soaking in stearic acid ethanol solution. The microstructure, hydrophobic properties and corrosion resistance of hydrophobic surface were characterized by means of scanning electron microscope, contact angle tester and electrochemical workstation. The results showed that the AM60 Mg-alloy was super hydrophilic after etching with hydrochloric acid. When the etching time was 25 min, the contact angle reached a maximum value, which was 125% higher than that of the untreated surface. With the increase of soaking time in the stearic acid ethanol solution, the contact angle increases first and then decreases. When soaked for 12 h, the contact angle reaches the maximum of 150.18° and the rolling angle is less than 10°. At this time, the hydrophobic film presents a micro/nano rough surface with low-surface energy, which have superior hydrophobic properties. The hydrophobic AM60 Mg-alloy has good corrosion resistance, and its corrosion current density is 88.19% lower than that of untreated matrix material, and the corresponding corrosion voltage is 19.72% higher, which significantly improves the corrosion resistance of the AM60 Mg-alloy. At the same time, the treated AM60 Mg-alloy has also good self-cleaning performance to dust and aqueous solution.

Key words:  AM60 Mg-alloy      chemical etching      super-hydrophobic      corrosion resistance      self-cleaning     
Received:  20 April 2021     
ZTFLH:  TG17  
Fund: Natural Science Basic Research Program of Shaanxi Province(2019JQ-156);Key Project of Shaanxi Province Education Department Science and Technology(19JS026);Shangluo Science and Technology Innovation Team(SK2019-75);Doctoral Research Program of Shangluo University(17SKY019)
Corresponding Authors:  DAI Weili     E-mail:  dweili@126.com
About author:  DAI Weili, E-mail: dweili@126.com

Cite this article: 

DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 301-308.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.088     OR     https://www.jcscp.org/EN/Y2022/V42/I2/301

Fig.1  XRD patterns of AM60 Mg-alloy before and after surface treatments
Fig.2  Raman spectra of AM60 Mg-alloy with different surface treatments
Fig.3  SEM images and surface contact angles of AM60 Mg-alloy samples without (a) and with surface treatments of etching for 10 min in HCl solution (b); etching for 10 min in HCl solution and then soaking for 12 h in SA ethanol solution (c); soaking for 12 h in SA ethanol solution (d)
Fig.4  Effect of soaking time on surface contact angle
Fig.5  SEM surface images and contact angles of AM60 Mg-alloy samples surfaces etched for 25 min in HCl solution and then soaked in SA ethanol solution for 0 h (a), 6 h (b, c), 12 h (d, e) and 16 h (f, g) (the insets are the magnified images)
Fig.6  Schematic illustration of Cassie model on contact angles of drop on hydrophobic (a) and super hydrophobic (b) surfaces
Fig.7  Polarization curves of AM60 Mg-alloy samples with different surface treatments in 3.5%NaCl solution
SampleIcorr / A·cm-2Ecorr / V
SA+HCl(6.518±0.03)×10-9-0.513±0.01
HCl(4.514±0.01)×10-6-0.683±0.02
Bare substrate(5.521±0.01)×10-8-0.639±0.02
Table 1  Corrosion current densities and corrosion voltages of AM60 magnesium alloy samples without and with surface treatments
Fig.8  SEM images of AM60 Mg-alloy without (a) and with (b) surface treatment after soaking in 3.5%NaCl solution (etched for 25 min in HCl solution and then soaked in SA for 12 h)
Fig.9  Photos of self-cleaning effect of M60 Mg-based alloy with hydrophobic surface for powder dust (a, b) and ink (c, d)
1 Zhou D M, Jiang L, Wang M T, et al. Effects of Ce(NO3)2 concentration and silicate sealing treatment on calcium phosphating film on surface of Mg-Zn-Y-Ca alloy for high speed railway corbel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 849
周殿买, 姜磊, 王美婷等. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 849
2 Pan H C, Ren Y P, Fu H, et al. Recent developments in rare-earth free wrought magnesium alloys having high strength: A review [J]. J. Alloy. Compd., 2016, 663: 321
3 Joost W J, Krajewski P E. Towards magnesium alloys for high-volume automotive applications [J]. Scr. Mater., 2017, 128: 107
4 Liu D F, Li Y G, Wei Y H, et al. Atmospheric corrosion and dynamic analysis of AM60 Mg alloy [J]. Rare Met. Mater. Eng., 2016, 45: 369
刘东风, 李永刚, 卫英慧等. AM60镁合金大气腐蚀及动力学分析 [J]. 稀有金属材料与工程, 2016, 45: 369
5 Wang L, Zhang B P, Shinohara T. Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions [J]. Mater. Des., 2010, 31: 857
6 Liu L, Yu S R. Effect of Gd addition on corrosion behavior of AM60 Magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 185
刘丽, 于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 185
7 Li C Q, Xu D K, Chen X B, et al. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys [J]. Electrochim. Acta, 2018, 260: 55
8 Zeng R C, Hu Y, Guan S K, et al. Corrosion of magnesium alloy AZ31: the influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution [J]. Corros. Sci., 2014, 86: 171
9 Jönsson M, Persson D. The influence of the microstructure on the atmospheric corrosion behaviour of magnesium alloys AZ91D and AM50 [J]. Corros. Sci., 2010, 52: 1077
10 Peng L M, Chang J W, Guo X W, et al. Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg-10Gd-3Y-0.4Zr [J]. J. Appl. Electrochem., 2009, 39: 913
11 Xia X, Davies C H J, Nie J F, et al. Influence of composition and processing on the corrosion of magnesium alloys containing binary and ternary additions of zinc and strontium [J]. Corrosion, 2015, 71: 38
12 Zhu W J, Chen J H, Yan H G, et al. Microstructure and properties of as-cast Mg-4Zn-xGa alloys [J]. Corros. Sci. Prot. Technol., 2019, 31: 590
朱伟俊, 陈吉华, 严红革等. 铸态Mg-4Zn-xGa合金的组织与性能研究 [J]. 腐蚀科学与防护技术, 2019, 31: 590
13 Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
王晓鸽, 高克玮, 颜鲁春等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
14 Cui X J, Lin X Z, Liu C H, et al. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy [J]. Corros. Sci., 2015, 90: 402
15 Liu C C, Liang J, Zhou J S, et al. Effect of laser surface melting on microstructure and corrosion characteristics of AM60B magnesium alloy [J]. Appl. Surf. Sci., 2015, 343: 133
16 Lu H M. Research on micro-arc oxidation film and electro-chemical corrosion of AM60 magnesium alloy [D]. Beijing: Beijing Jiaotong University, 2019
鹿红梅. AM60镁合金微弧氧化膜层及电化学腐蚀性能研究 [D]. 北京: 北京交通大学, 2019
17 Wang H Y, Zhu Y X, Hu Z Y, et al. A novel electrodeposition route for fabrication of the superhydrophobic surface with unique self-cleaning, mechanical abrasion and corrosion resistance properties [J]. Chem. Eng. J., 2016, 303: 37
18 Wang Y, Gu Z P, Xin Y, et al. Facile formation of super-hydrophobic nickel coating on magnesium alloy with improved corrosion resistance [J]. Colloid. Surf., 2018, 538A: 500
19 Araghi A, Paydar M H. Electroless deposition of Ni-W-P-B4C nanocomposite coating on AZ91D magnesium alloy and investigation on its properties [J]. Vacuum, 2013, 89: 67
20 Zhu L Q, Song G L. Improved corrosion resistance of AZ91D magnesium alloy by an aluminium-alloyed coating [J]. Surf. Coat. Technol., 2006, 200: 2834
21 Elsentriecy H H, Azumi K, Konno H. Effect of surface pretreatment by acid pickling on the density of stannate conversion coatings formed on AZ91 D magnesium alloy [J]. Surf. Coat. Technol., 2007, 202: 532
22 Wang H L, Liu L Y, Dou Y, et al. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy [J]. Appl. Surf. Sci., 2013, 286: 319
23 Zucchi F, Frignani A, Grassi V, et al. Stannate and permanganate conversion coatings on AZ31 magnesium alloy [J]. Corros. Sci., 2007, 49(12): 4542
24 Rajabalizadeh Z, Seifzadeh D. The effect of copper ion on microstructure, plating rate and anticorrosive performance of electroless Ni-P coating on AZ61 magnesium alloy [J]. Prot. Met. Phys. Chem. Surf., 2014, 50: 516
25 Zhang Y F, Blawert C, Tang S W, et al. Influence of surface pre-treatment on the deposition and corrosion properties of hydrophobic coatings on a magnesium alloy [J]. Corros. Sci., 2016, 112: 483
26 Peng C Y, Chen Z Y, Tiwari M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance [J]. Nat. Mater., 2018, 17: 355
27 Zhao L, Liu Q, Gao R, et al. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance [J]. Corros. Sci., 2014, 80: 177
28 Wang Z M. Construction and characterization of superhydrophobic surfaces of three transitional metals on AZ31 magnesium alloy surface [D]. Harbin: Harbin Engineering University, 2018
王梓名. AZ31镁合金表面三种过渡金属超疏水表面的构筑及其性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2018
29 Zhang H Y, Cao J Y, Feng Y F, et al. Preparation and corrosion performance of Ni-P/NiO superhydrophobic surface film on AZ31 Mg-alloy [J]. Corros. Sci. Prot. Technol., 2019, 31: 411
张海永, 曹京宜, 冯亚菲等. AZ31镁合金Ni-P/NiO耐腐蚀超疏水表面的制备及其性能研究 [J]. 腐蚀科学与防护技术, 2019, 31: 411
30 Peng H Q, Luo Z J, Li K Y, et al. Study on preparation process and self-cleaning performance of superhydrophobic aluminum surfaces fabricated by hydrochloric acid etching [J]. Appl. Chem. Ind., 2019, 48: 2900
彭华乔, 罗振军, 李开宇等. 盐酸刻蚀制备铝合金超疏水表面的工艺及自清洁性研究 [J]. 应用化工, 2019, 48: 2900
31 Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4+-NO3- containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553
32 Luo M, Guan P, Liu W H, et al. Raman spectrometry of several saturated fatty acids and their salts [J]. Spectrosc. Spect. Anal., 2006, 26: 2030
罗曼, 关平, 刘文汇等. 几种饱和脂肪酸及其盐的拉曼光谱研究 [J]. 光谱学与光谱分析, 2006, 26: 2030
33 Zhang J Y. Researches on preparation, deformation and superhydrophobic modification of biomedical degradable rare-earth magnesium alloys [D]. Guangzhou: South China University of Technology, 2017
张俊逸. 生物医用可降解稀土镁合金的制备、成形及超疏水改性研究 [D]. 广州: 华南理工大学, 2017
34 Huang Y P, Zhang Y F, Yu X Q, et al. Fabrication of superhydrophobic surface on magnesium alloy and corrosion resistance analysis [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2012, 42: 915
黄艳萍, 张友法, 余新泉等. 镁合金表面超疏水性的构建及耐腐蚀性分析 [J]. 东南大学学报 (自然科学版), 2012, 42: 915
35 Xu L Q, Wan X F, Dong J, et al. Corrosion resistance of superhydrophobic structure on magnesium alloy surface prepared by hydrochloric acid-laser composite etching and SA modification [J]. Mater. Mech. Eng., 2019, 43(10): 6
徐雷秋, 万晓峰, 董菁等. 盐酸-激光复合刻蚀+SA修饰制备镁合金表面超疏水结构的耐腐蚀性能 [J]. 机械工程材料, 2019, 43(10): 6
36 Li M, Fu H, Liu Z G, et al. Characterization of CeO2 modified by stearic acid and the modification mechanism [J]. Chin. Rare Earths, 2010, 31(3): 11
李梅, 付海, 柳召刚等. 硬脂酸改性氧化铈的效果表征与机理研究 [J]. 稀土, 2010, 31(3): 11
37 Ouyang Y J, Hu T, Wang J Y, et al. Electrochemical deposition and characterization of layered double hydroxide film on magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 453
欧阳跃军, 胡婷, 王佳音等. 镁合金表面层状双氢氧化物的电化学沉积和表征 [J]. 中国腐蚀与防护学报, 2019, 39: 453
38 Li Y F, Yu Z J, Yu Y F, et al. Fabrication of super-hydrophobic surfaces on aluminum alloy [J]. J. Chem. Eng. Chin. Univ., 2008, 22: 6
李艳峰, 于志家, 于跃飞等. 铝合金基体上超疏水表面的制备 [J]. 高校化学工程学报, 2008, 22: 6
[1] LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[2] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[3] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[4] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[5] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[6] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[7] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[8] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[9] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[10] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[11] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[12] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[13] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[14] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[15] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
No Suggested Reading articles found!