Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 833-838    DOI: 10.11902/1005.4537.2021.247
Current Issue | Archive | Adv Search |
Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities
HUANG Lianpeng, ZHANG Xin(), XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua
College of Mechanics and Materials, Hohai University, Nanjing 211100, China
Download:  HTML  PDF(5413KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Al-3.0Mg-xRE/Fe alloys in 3.5%NaCl solution in the presence of magnetic field of different intensities was studied by means of electrochemical workstation, and scanning electron microscope (SEM) with energy disperse spectroscopy (EDS). The results indicated that the applied magnetic field could enhance the corrosion potential and pitting corrosion potential, and reduce the corrosion current density of Al-3.0Mg-xRE/Fe alloys. At the same time, the amount and size of the formed pits in the presence of magnetic field were lower than those in the absence of magnetic field. Magnetic field can reduce the corrosion- and pitting-sensitivity, and the corrosion rate of Al-3.0Mg-xRE/Fe alloys. With the increase of magnetic field intensity, the inhibition effect of magnetic field is enhanced.

Key words:  Al-Mg alloy with different electrode potential phases      rare earth elements      magnetic field      corrosion behavior      pitting corrosion     
Received:  22 September 2021     
ZTFLH:  TG.174.442  
Fund: National Natural Science Foundation of China(51909071);Natural Science Foundation of Jiangsu Province(BK20190493);Fundametal Scientific Resarch Business Expenses of CentralUniversities(B220202040)
Corresponding Authors:  ZHANG Xin     E-mail:  zhangxin.007@163.com
About author:  ZHANG Xin, E-mail: zhangxin.007@163.com

Cite this article: 

HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 833-838.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.247     OR     https://www.jcscp.org/EN/Y2022/V42/I5/833

Fig.1  Device for electrochemical test
Fig.2  Surface morphologies of Al-3.0Mg (a), Al-3.0Mg-0.2RE (b), Al-3.0%Mg-1.0RE (c), Al-3.0%Mg-0.2Fe (d) and Al-3.0%Mg-1.0Fe (e) alloys
PointAlMgFeCeLa
167.711.5130.88------
261.641.66---24.8511.85
374.151.1824.67------
457.351.86---23.8816.91
563.090.9335.98------
666.590.8832.53------
Table 1  EDS analysis of Al-3.0Mg with different second phase characteristics (mass fraction / %)
Fig.3  Surface morphologies of 0%RE or Fe (a); 0.2%RE (b); 1.0%RE (c); 0.2%Fe (d); 1.0%Fe (e) alloy immersed in 3.5%NaCl solution for 7 d under 0 T (a1-e1), 0.2 T (a2-e2) and 0.4 T (a3-e3) magnetic field
Fig.4  Surface morphologies of Al-3.0Mg-0.2RE (a) and Al-3.0Mg-0.2Fe (b) alloy immersed in 3.5%NaCl solution for 7 d
PointAlMgFeCeLaNaCl
156.081.04---------------
232.641.01---24.449.425.281.20
337.651.4919.90------2.66---
Table 2  EDS analysis of Al-3.0Mg-0.2RE/Fe alloy immersed in 3.5%NaCl solution for 7 d (mass fraction / %)
Fig.5  Tafel curves of Al-3.0Mg (a), Al-3.0Mg-0.2RE (b), Al-3.0%Mg-1.0RE (c), Al-3.0%Mg-0.2Fe (d) and Al-3.0%Mg-1.0Fe (e) alloys with different phase characteristics in 3.5%NaCl solution under 0, 0.2 and 0.4 T magnetic field
AlloyEcorr / VIcorr / μA·cm-2Epit / V
Al-3.0Mg0 T-1.2167.253-0.821
0.2 T-1.1926.928-0.806
0.4 T-1.1866.670-0.799
Al-3.0Mg-0.2RE0 T-1.2436.788-0.793
0.2 T-1.2166.122-0.781
0.4 T-1.1935.815-0.773
Al-3.0Mg-1.0RE0 T-1.2619.130-0.836
0.2 T-1.2368.999-0.833
0.4 T-1.2188.759-0.839
Al-3.0Mg-0.2Fe0 T-1.24010.301-0.841
0.2 T-1.2298.998-0.824
0.4 T-1.2147.586-0.819
Al-3.0Mg-1.0Fe0 T-1.0738.408-0.805
0.2 T-1.0346.987-0.791
0.4 T-1.0176.170-0.783
Table 3  Values of Ecorr, Icorr and Epitof Al-3.0Mg alloys with different contents of RE/Fe tested under 0, 0.2 and 0.4 T magnetic field derived from the polarization curves
1 Cho C H, Son H W, Lee J C, et al. Effect of high Mg content and processing parameters on Portevin-Le Chatelier and negative strain rate sensitivity effects in Al-Mg alloys [J]. Mater. Sci. Eng., 2020, 779A: 139151
2 Wang H, Geng H W, Zhou D S, et al. Multiple strengthening mechanisms in high strength ultrafine-grained Al-Mg alloys [J]. Mater. Sci. Eng., 2020, 771A: 138613
3 Zhang D, Zhang Z, Pan Y L, et al. Current-driving intergranular corrosion performance regeneration below the precipitates solvus temperature in Al-Mg alloy [J]. J. Mater. Sci. Technol., 2020, 53: 132
doi: 10.1016/j.jmst.2020.01.071
4 Beura V K, Kale C, Srinivasan S, et al. Corrosion behavior of a dynamically deformed Al-Mg alloy [J]. Electrochim. Acta, 2020, 354: 136695
doi: 10.1016/j.electacta.2020.136695
5 Wei M H, Liu H P. Research progress of corrosion resistant aluminum alloys for ship applications [J]. Light Alloy Fabricat. Technol., 2006, 34(12): 6
魏梅红, 刘徽平. 船舶用耐蚀铝合金的研究进展 [J]. 轻合金加工技术, 2006, 34(12): 6
6 Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
doi: 10.1016/S1388-2481(01)00136-9
7 Aaboubi O, Chopart J P, Douglade J, et al. Magnetic field effects on mass transport [J]. J. Electrochem. Soc., 1990, 137: 1796
doi: 10.1149/1.2086807
8 Zhang P, Zhu Q, Su Q, et al. Corrosion behavior of T2 copper in 3.5% sodium chloride solution treated by rotating electromagnetic field [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1439
doi: 10.1016/S1003-6326(16)64249-8
9 Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution [J]. J. Mater. Sci. Technol., 2010, 26: 355
doi: 10.1016/S1005-0302(10)60058-8
10 Chiba A, Ogawa T. Influence of magnetic field on the dissolution of copper, zinc and brass in flowing nitric acid solution [J]. Corros. Eng., 1989, 38: 523
doi: 10.3323/jcorr1974.38.10_523
11 Devos O, Aaboubi O, Chopart J P, et al. EIS investigation of zinc electrodeposition in basic media at low mass transfer rates induced by a magnetic field [J]. J. Phys. Chem., 1999, 103B: 496
12 Sueptitz R, Koza J, Uhlemann M, et al. Magnetic field effect on the anodic behavior of a ferromagnetic electrode in acidic solution [J]. Electrochim. Acta, 2009, 54: 2229
doi: 10.1016/j.electacta.2008.10.055
13 Espina-Hernández J H, Caleyo F, Venegas V, et al. Pitting corrosion in low carbon steel influenced by remanent magnetization [J]. Corros. Sci., 2011, 53: 3100
doi: 10.1016/j.corsci.2011.05.044
14 Zhang X, Wang Z H, Zhou Z H, et al. Effects of magnetic field and rare earth addition on corrosion behavior of Al-3.0wt%Mg alloy [J]. J. Alloy. Compd., 2017, 698: 241
doi: 10.1016/j.jallcom.2016.12.184
15 Zhang X, Wang Z H, Zhou Z H, et al. Corrosion behavior of Al-3.0wt%Mg alloy in NaCl solution under magnetic field [J]. Rare Met., 2017, 36: 627
doi: 10.1007/s12598-016-0785-5
16 Zhang X, Wang Z H, Zhou Z H, et al. Impact of magnetic field on corrosion performance of Al-Mg alloy with different electrode potential phases [J]. Intermetallics, 2021, 129: 107037
doi: 10.1016/j.intermet.2020.107037
17 Li X J, Zhang M, Yuan B Y, et al. Effects of the magnetic field on the corrosion dissolution of the 304 SS|FeCl3 system [J]. Electrochim. Acta, 2016, 222: 619
doi: 10.1016/j.electacta.2016.11.017
18 Lu Z P, Huang C B, Huang D L, et al. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides [J]. Corros. Sci., 2006, 48: 3049
doi: 10.1016/j.corsci.2005.11.014
19 Lu Z P, Yang W. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions [J]. Corros. Sci., 2008, 50: 510
doi: 10.1016/j.corsci.2007.07.009
20 Sueptitz R, Tschulik K, Uhlemann M, et al. Impact of magnetic field gradients on the free corrosion of iron [J]. Electrochim. Acta, 2010, 55: 5200
doi: 10.1016/j.electacta.2010.04.039
21 Zhang X, Wang Z H, Zhou Z H, et al. Effects of cerium and lanthanum on the corrosion behavior of Al-3.0wt.%Mg alloy [J]. J. Mater. Eng. Perform., 2016, 25: 1122
doi: 10.1007/s11665-016-1948-0
22 Zhang X, Wang Z H, Zhou Z H, et al. Influence of rare earth (Ce and La) addition on the performance of Al-3.0wt%Mg alloy [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2017, 32: 611
23 Li S H. Effect of Ce、Y on mechanical properties and corrosion resistance of AZ91D magnesium alloy [D]. Huhhot: Inner Mongolia University of Technology, 2007
李仕慧. Ce、Y对AZ91D镁合金力学性能及耐蚀性的影响 [D]. 呼和浩特: 内蒙古工业大学, 2007
24 Codaro E N, Nakazato R Z, Horovistiz A L, et al. An image processing method for morphology characterization and pitting corrosion evaluation [J]. Mater. Sci. Eng., 2002, 334A: 298
25 Foley P, Nguyen N. The chemical nature of aluminum corrosion: V. energy transfer in aluminum dissolution [J]. J. Electrochem. Soc., 1982, 129: 464
doi: 10.1149/1.2123881
26 Waskaas M, Kharkats Y I. Effect of magnetic fields on convection in solutions containing paramagnetic ions [J]. J. Electroanal. Chem., 2001, 502: 51
doi: 10.1016/S0022-0728(00)00528-3
[1] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[2] LIANG Zhiyuan, XU Yiming, WANG Shuo, LI Yufeng, ZHAO Qinxin. Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[3] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[4] YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[5] ZHANG Keqian, ZHANG Hua, LI Yang, HONG Ye, HE Cheng. Corrosion of Electrode Materials in Joule Heated Melter[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[6] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[7] XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo. Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[8] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[9] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[10] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[11] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[12] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[13] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[14] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[15] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
No Suggested Reading articles found!