Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 819-825    DOI: 10.11902/1005.4537.2021.253
Current Issue | Archive | Adv Search |
Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel
ZHANG Yuan1, ZHANG Xian1(), CHEN Siyu1, LI Teng2(), LIU Jing1, WU Kaiming1
1.Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Collaborative Innovation Center for Advanced Steels, The State Key Laboratory of Refractory Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
Download:  HTML  PDF(3054KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

These results show that the passivation films formed on 316L stainless steel in air and phosphoric acid solution have a double-layered structure. The inner layer mainly contained Cr2O3. The outer layer of passive film formed in air was composed of Fe oxides and hydroxides. The outer layer of the passive film formed in phosphoric acid solutions was Fe oxide and phosphate. When the phosphoric acid concentration was less than 1 mol/L, the passive film of 316L stainless steel is less damaged, maintaining good corrosion resistance. However, as corrosion time extended, the passivation film would change from compact to loose. When the phosphoric acid concentration was greater than 1 mol/L, the passive film was seriously damaged, becoming thin and loosened, so that the corrosion resistance was obviously reduced. The formation of insoluble corrosion products relatively slows down the process of passive film damage.

Key words:  phosphoric acid      316L stainless steel      passive film      corrosion resistance     
Received:  22 September 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51601138);National Natural Science Foundation of China(51601137)
Corresponding Authors:  ZHANG Xian,LI Teng     E-mail:  xianzhang@wust.edu.cn;liteng@ciae.ac.cn;liteng@wust.edu.cn
About author:  LI Teng, E-mail: liteng@ciae.ac.cn
ZHANG Xian, E-mail: xianzhang@wust.edu.cn

Cite this article: 

ZHANG Yuan, ZHANG Xian, CHEN Siyu, LI Teng, LIU Jing, WU Kaiming. Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 819-825.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.253     OR     https://www.jcscp.org/EN/Y2022/V42/I5/819

Fig.1  Potentiodynamic polarization curves of 316L stainless steel in phosphoric acid with different concentrations
C / mol·L-1Ipass / μA·cm-2Etran / V
0.13.4741.245
0.26.8851.233
0.53.4741.256
18.1631.262
214.8701.295
Table 1  Ipass and Etran of 316L stainless steel in phosphoric acid with different concentrations
Fig.2  Nyquist (a) and Bode (b) spectra of 316L stainless steel in phosphoric acid with different concentrations and equivalent circuit (c)
Cmol·L-1RsΩ·cm2R1Ω·cm2C1μF·cm-2R2Ω·cm2C2μF·cm-2RpΩ·cm2
0.119.1514789069.3423435520171325
0.211.026548582.502526059290745
0.54.2954975781.491867411268431
12.252701090.361764811444658
21.6941106193.18966027.2320721
Table 2  Fitting results of EIS data
Fig.3  Double-log plots for potentiostatic polarization of 316L stainless steel in phosphoric acid with different concentrations
Fig.4  Mott-Schottky curves of 316L stainless steel in phosphoric acid with different concentrations 0.1 mol/L H3PO4 (a), 0.2 mol/L H3PO4 (b), 0.3 mol/L H3PO4 (c) and 1 mol/L and 2 mol/L H3PO4 (d)
C / mol·L-1NA / 1019·cm-3ND / 1019·cm-3
0.11.472.06
0.219.9624.60
0.51156.33345.00
1989.51235.79
2973.55276.95
Table 3  Carrier densities of passive film of 316L stainless steel formed in phosphoric acid with different concentrations
Fig.5  Atomic ratio of element (O, Fe and Cr) in passive film of 316L stainless steel formed in air
Fig.6  Detailed XPS speactra of passive film of 316L stainless steel formed in air: (a) O, (b) Fe, (c) Cr
Fig.7  Detalied XPS spectram of passive film of 316L stainless steel formed in posphoric acid: (a) O, (b) Fe, (c) Cr
1 Prabakaran K, Rajeswari S. Electrochemical, SEM and XPS investigations on phosphoric acid treated surgical grade type 316L SS for biomedical applications [J]. J. Appl. Electrochem., 2009, 39: 887
doi: 10.1007/s10800-008-9738-5
2 Benabdellah M, Hammouti B. Corrosion behaviour of steel in concentrated phosphoric acid solutions [J]. Appl. Surf. Sci., 2005, 252: 1657
doi: 10.1016/j.apsusc.2005.03.191
3 Sánchez-Tovar R, Montañés M T, García-Antón J, et al. Corrosion behaviour of micro-plasma arc welded stainless steels in H3PO4 under flowing conditions at different temperatures [J]. Corros. Sci., 2011, 53: 1237
doi: 10.1016/j.corsci.2010.12.017
4 Sánchez-Tovar R, Montañés M T, García-Antón J, et al. Influence of temperature and hydrodynamic conditions on the corrosion behavior of AISI 316L stainless steel in pure and polluted H3PO4: application of the response surface methodology [J]. Mater. Chem. Phys., 2012, 133: 289
doi: 10.1016/j.matchemphys.2012.01.024
5 Bellaouchou A, Guenbour A, Benbachir A. Corrosion behavior of stainless steel in phosphoric acid polluted by sulfide ions [J]. Corrosion, 1993, 49: 656
doi: 10.5006/1.3316097
6 Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of potential formation on the electrochemical behaviour of a highly alloyed austenitic stainless steel in contaminated phosphoric acid at different temperatures [J]. Electrochim. Acta, 2012, 80: 248
doi: 10.1016/j.electacta.2012.07.012
7 Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: a combined electrochemical and analytical study [J]. Electrochim. Acta, 2010, 55: 6174
doi: 10.1016/j.electacta.2009.10.026
8 Borrás C A, Romagnoli R, Lezna R O. In-situ spectroelectrochemistry (UV-visible and infrared) of anodic films on iron in neutral phosphate solutions [J]. Electrochim. Acta, 2000, 45: 1717
doi: 10.1016/S0013-4686(99)00393-X
9 Reffass M, Sabot R, Jeannin M, et al. Effects of phosphate species on localised corrosion of steel in NaHCO3+NaCl electrolytes [J]. Electrochim. Acta, 2009, 54: 4389
doi: 10.1016/j.electacta.2009.03.014
10 Lin Y H, Du R G, Hu R G, et al. A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel [J]. Acta Phys. Chim. Sin., 2005, 21: 740
doi: 10.3866/PKU.WHXB20050709
林玉华, 杜荣归, 胡融刚 等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, 21: 740
11 Muñoz A I, Antón J G, Guiñón J L, et al. Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in libr solutions using electrochemical techniques [J]. Corros. Sci., 2007, 49: 3200
doi: 10.1016/j.corsci.2007.03.002
12 Song P C. Study on corrosion behaviors of a new marine al-mg alloy [D]. Harbin: Harbin Engineering University, 2020: 24
宋鹏程. 新型Al-Mg系船用铝合金的腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020: 24
13 Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test [J]. Corros. Sci., 2018, 145: 307
doi: 10.1016/j.corsci.2018.10.011
14 Yi G H, Zheng D J, Song G L. Influence of acid pickling on morphology, optical parameters and corrosion resistance of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 461
伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 461
15 Xiao Q, Lu Z P, Chen J J, et al. Magnetoelectropolishing treatment for improving the oxidation resistance of 316L stainless steel in pressurized water reactor primary water [J]. J. Nucl. Mater., 2019, 518: 357
doi: 10.1016/j.jnucmat.2019.03.028
16 Cui T M, Cai S W, Ning F, et al. Effect of pre-charged hydrogen on the oxide film of 316L stainless steel in simulated PWR primary water [J]. Corros. Prot., 2021, 42: 1
崔同明, 蔡爽巍, 宁飞 等. 模拟压水堆一回路水中预充氢对316L不锈钢氧化膜的影响 [J]. 腐蚀与防护, 2021, 42: 1
17 Almeida E, Pereira D, Figueiredo M O, et al. The influence of the interfacial conditions on rust conversion by phosphoric acid [J]. Corros. Sci., 1997, 39: 1561
doi: 10.1016/S0010-938X(97)00058-9
18 Hakiki N E, Montemor M F, Ferreira M G S, et al. Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel [J]. Corros. Sci., 2000, 42: 687
doi: 10.1016/S0010-938X(99)00082-7
19 Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci., 2005, 47: 581
doi: 10.1016/j.corsci.2004.07.002
[1] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[2] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[3] HU Xiongxin, ZHANG Xian, LIU Jing, WU Kaiming, LIN An. Development and Performance of Phosphate-based Protective Insulation Coating for Non-oriented Electrical Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[4] WEN Jiayuan, SONG Guihong, WEI Xiaoyuan, ZHAO Xin, WU Yusheng, DU Hao, HE Chunlin. Influence of Cr Content on Corrosion Resistance of Composite Ni/Ni-Cr/Ni-Cr-Al-Si Films on Cu[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[5] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[6] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[7] LI Xianghong, XU Xin, LEI Ran, DENG Shuduan. Synergistic Inhibition Effect of Walnut Green Husk Extract Complex Inhibitors on Steel in Phosphoric Acid[J]. 中国腐蚀与防护学报, 2022, 42(3): 358-368.
[8] YU Shuaixian, WU Yajun, WU Haisheng, WU Liang, MA Yanlong, DENG Shengwei, SUN Lidong. Optimization of Titanate Modified Silane Coatings and Their Effect on Corrosion Resistance of 5056 Aluminum Foils[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[9] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[10] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[11] LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[12] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[13] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[14] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[15] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
No Suggested Reading articles found!