|
|
Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments |
LIU Haochen1,2, FAN Lin2( ), ZHANG Haibing2, WANG Yingying1( ), TANG Junlei1, BAI Xuehan2, SUN Mingxian2 |
1.College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China 2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China |
|
|
Abstract Based on the survey of the application and research reports of Ti-alloy, this paper summarizes the cause and mechanism of stress corrosion cracking of Ti-alloy in deep sea environments, and discusses the effect of deep-sea environmental factors such as hydrostatic pressure, dissolved oxygen content, pH value and temperature on the stress corrosion cracking behavior. It is expected to provide a reference for the further study of stress corrosion cracking and other local corrosion types of titanium alloy, and to provide support for optimizing the microstructure and properties of Ti-alloy and the establishment of advanced Ti-alloy material for the deep sea engineering.
|
Received: 16 March 2021
|
|
Fund: National Natural Science Foundation of China(51931008) |
Corresponding Authors:
FAN Lin,WANG Yingying
E-mail: fanl@sunrui.net;yingyingwanglyon@126.com
|
About author: WANG Yingying, E-mail: yingyingwanglyon@126.com FAN Lin, E-mail: fanl@sunrui.net
|
1 |
Lin J H, Dan Z H, Lu J F, et al. Research status and prospect on marine corrosion of titanium alloys in deep ocean environments [J]. Rare Met. Mater. Eng., 2020, 49: 1090
|
|
林俊辉, 淡振华, 陆嘉飞等. 深海腐蚀环境下钛合金海洋腐蚀的发展现状及展望 [J]. 稀有金属材料与工程, 2020, 49: 1090
|
2 |
Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
|
|
郭为民, 孙明先, 邱日等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313
|
3 |
Brown A, Wright R, Mevenkamp L, et al. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses [J]. Aquat. Toxicol., 2017, 191: 10
|
4 |
Fan W J, Zhang Y, Tian H W, et al. Corrosion behavior of two low alloy steel in simulative deep-sea environment coupling to titanium alloy [J]. Coll. Interf. Sci. Commun., 2019, 29: 40
|
5 |
Kark S, Brokovich E, Mazor T, et al. Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation [J]. Conserv. Biol., 2015, 29: 1573
|
6 |
He C Y, Zhang L J. Development and application of high temperature titanium alloy at home and abroad [J]. World Nonferr. Met., 2016, (1): 21
|
|
何春艳, 张利军. 国内外高温钛合金的发展与应用 [J]. 世界有色金属, 2016, (1): 21
|
7 |
Zhao Y Q, Ge P. Current situation and development of new titanium alloys invented in China [J]. J. Aeronaut. Mater., 2014, 34(4): 51
|
|
赵永庆, 葛鹏. 我国自主研发钛合金现状与进展 [J]. 航空材料学报, 2014, 34(4): 51
|
8 |
Pang J J, Blackwood D J. Corrosion of titanium alloys in high temperature near anaerobic seawater [J]. Corros. Sci., 2016, 105: 17
|
9 |
Yang X J, Liu Z Y, Zhang D W, et al. Stress corrosion cracking behavior of industrial pure titanium TA2 in sulfide containing deep seawater environment [J]. China Surf. Eng., 2019, 32(4): 17
|
|
杨小佳, 刘智勇, 张达威等. 工业纯钛TA2在含硫化物深海水环境中的应力腐蚀行为 [J]. 中国表面工程, 2019, 32(4): 17
|
10 |
Pilchak A L, Young A H, Williams J C. Stress corrosion cracking facet crystallography of Ti-8Al-1Mo-1V [J]. Corros. Sci., 2010, 52: 3287
|
11 |
Dong Y C, Fang Z G, Chang H, et al. Service performance of titanium alloy in marine environment [J]. Mater. China, 2020, 39: 185
|
|
董月成, 方志刚, 常辉等. 海洋环境下钛合金主要服役性能研究 [J]. 中国材料进展, 2020, 39: 185
|
12 |
Wu J X. Application of titanium alloy material on marine material [J]. Marine Equip./Mater. Market., 2020, (8): 5
|
|
吴建新. 钛合金材料在船舶材料上的应用 [J]. 船舶物资与市场, 2020, (8): 5
|
13 |
Yu Y, Li J Q. Current application and prospect of titanium alloys in marine engineering [J]. Dev. Appl. Mater., 2018, 33(3): 111
|
|
于宇, 李嘉琪. 国内外钛合金在海洋工程中的应用现状与展望 [J]. 材料开发与应用, 2018, 33(3): 111
|
14 |
Breddermann K, Drescher P, Polzin C, et al. Printed pressure housings for underwater applications [J]. Ocean Eng., 2016, 113: 57
|
15 |
Li D Q, Wang S S, Bao E D. Titanium alloy material in the ship in the material application and development [J]. World Nonferr. Met., 2015, (9): 127
|
|
李德强, 王树森, 包恩达. 钛合金材料在船舶材料上的应用与发展 [J]. 世界有色金属, 2015, (9): 127
|
16 |
Li L S, Xu W S, Chen W H, et al. Application of titanium alloy in seawater piping of aluminum alloy warship [J]. Ship Boat, 2016, 27(3): 27
|
|
黎理胜, 徐文珊, 陈万宏等. 钛合金在铝合金舰船海水管路系统的应用 [J]. 船舶, 2016, 27(3): 27
|
17 |
Song D J, Niu L, Yang S L. Research on application technology of titanium alloy in marine pipeline [J]. Rare Met. Mater. Eng., 2020, 49: 1100
|
|
宋德军, 牛龙, 杨胜利. 船舶海水管路钛合金应用技术研究 [J]. 稀有金属材料与工程, 2020, 49: 1100
|
18 |
Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications [M]. Weinheim: Wiley-VCH, 2003: 491
|
19 |
Li X J, Wang G, Yang Y L, et al. The development and application of titanium and titanium alloys in ocean and land oil & gas exploiting industry [J]. China Titanium Ind., 2011, (2): 18
|
|
李献军, 王镐, 羊玉兰等. 钛及钛合金在海洋和大陆油气开采工业中的开发和应用 [J]. 中国钛业, 2011, (2): 18
|
20 |
Withers P J. Residual stress and its role in failure [J]. Rep. Prog. Phys., 2007, 70: 2211
|
21 |
Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials [J]. Chin. J. Eng., 2019, 41: 929
|
|
陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响 [J]. 工程科学学报, 2019, 41: 929
|
22 |
Wang J, Jin T, Ma Y M, et al. Stress corrosion cracking behavior of 2507 duplex stainless steel under high residual stress [J]. Pressure Vessel Technol., 2020, 37(3): 50
|
|
王军, 靳彤, 马一鸣等. 高残余应力下2507双相不锈钢应力腐蚀开裂行为 [J]. 压力容器, 2020, 37(3): 50
|
23 |
Bai L Y, Jiang K B, Gao L, et al. Influence mechanism of residual stress on stress corrosion behavior of welded structure [J]. Hot Work. Technol., 2017, 46(21): 168
|
|
白林越, 江克斌, 高磊等. 残余应力对焊接结构应力腐蚀行为影响机理研究 [J]. 热加工工艺, 2017, 46(21): 168
|
24 |
Pan W W, Chen M C, Li B, et al. Analysis of the influence mechanism of residual stress on the stress corrosion behavior of welded structure [J]. Equip. Technol., 2019, (4): 118
|
|
潘文伟, 陈民昌, 李兵等. 残余应力对焊接结构应力腐蚀行为影响机理分析 [J]. 装备维修技术, 2019, (4): 118
|
25 |
Zhu J. Study on the effects and mechanism of deep cryogenic treatment time on organization and properties of electron-beam-welded TC4 joints [D]. Tianjin: Tianjin University, 2017
|
|
朱江. 深冷处理时间对TC4钛合金电子束焊接接头组织、性能的影响及机理研究 [D]. 天津: 天津大学, 2017
|
26 |
Yu C Y. Development of corrosion resistant titanium alloys [J]. Titanium Ind. Prog., 2003, (1): 12
|
|
余存烨. 耐蚀钛合金的发展 [J]. 钛工业进展, 2003, (1): 12
|
27 |
Atapour M, Pilchak A L, Shamanian M, et al. Corrosion behavior of Ti-8Al-1Mo-1V alloy compared to Ti-6A1-4V [J]. Mater. Des., 2011, 32: 1692
|
28 |
Yang W T, Long X Q. Special corrosion types of titanium alloy used in civil aircraft [J]. Total Corros. Contr., 2008, 22(2): 42
|
|
杨文涛, 隆小庆. 飞机上钛合金的特殊腐蚀形式 [J]. 全面腐蚀控制, 2008, 22(2): 42
|
29 |
Pustode M D, Raja V S, Paulose N. The stress-corrosion cracking susceptibility of near-α titanium alloy IMI 834 in presence of hot salt [J]. Corros. Sci., 2014, 82: 191
|
30 |
Jiang C Y, Wang T, Yan Q, et al. Research on welding application of titanium alloy used in ships [J]. Dev. Appl. Mater., 1992, (6): 16
|
|
蒋成禹, 汪汀, 严铿等. 舰船用钛合金的焊接应用研究 [J]. 材料开发与应用, 1992, (6): 16
|
31 |
Shamir M, Junaid M, Khan F N, et al. A comparative study of electrochemical corrosion behavior in Laser and TIG welded Ti-5Al-2.5Sn alloy [J]. J. Mater. Res. Technol., 2019, 8: 87
|
32 |
Karimzadeh F, Heidarbeigy M, Saatchi A. Effect of heat treatment on corrosion behavior of Ti-6Al-4V alloy weldments [J]. J. Mater. Proc. Technol., 2008, 206: 388
|
33 |
Fang W P, Xiao T, Zhang Y P, et al. Stress corrosion crack sensitivity of ultra-thick TC4 titanium alloy electron beam welding joints [J]. Trans. China Weld. Instit., 2019, 40: 121
|
|
房卫萍, 肖铁, 张宇鹏等. 超厚板TC4钛合金电子束焊接接头应力腐蚀敏感性 [J]. 焊接学报, 2019, 40: 121
|
34 |
Shukla A K, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13.4Al-29Nb alloys in simulated human body conditions [J]. Intermetallics, 2005, 13: 631
|
35 |
Diao Y W. The study on tensile behavior of Ti-Al-Sn-Zr-Mo-Nb-W-Si high temperature titanium alloy at 700 ℃ [D]. Beijing: General Research Institute for Nonferrous Metals, 2019
|
|
刁雨薇. Ti-Al-Sn-Zr-Mo-Nb-W-Si高温钛合金700 ℃拉伸行为研究 [D]. 北京: 北京有色金属研究总院, 2019
|
36 |
Shi K Y, Wu W J, Zhang Y, et al. Electrochemical properties of Nb coating on TC4 substrate in simulated body solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 71
|
|
史昆玉, 吴伟进, 张毅等. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 71
|
37 |
Wang L, Yi D Q, Liu H Q, et al. Effect of Ru on corrosion behavior of Ti-6Al-4V alloy and its mechanism [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 25
|
|
王乐, 易丹青, 刘会群等. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究 [J]. 中国腐蚀与防护学报, 2020, 40: 25
|
38 |
Wu X F, Yang H Q, Wang C Y. Effect of manganese addition on microstructure and mechanical properties of Ti-Mo biomedical alloys [J]. Chin. J. Nonferrous Met., 2017, 27: 1902
|
|
武晓峰, 杨会齐, 王春雨. Mn对生物医用Ti-Mo合金组织与力学性能的影响 [J]. 中国有色金属学报, 2017, 27: 1902
|
39 |
Zhang R. The study on susceptibility to stress corrosion carcking and hydrogen embrittlement of titanium and titanium alloy in seawater [D]. Hohhot: Inner Mongolia University of Technology, 2013
|
|
张睿. 钛及钛合金在海水中的应力腐蚀及氢脆敏感性研究 [D]. 呼和浩特: 内蒙古工业大学, 2013
|
40 |
Sun Z J, Wang Y. Research status and prospect of the stress-corrosion of titanium alloys [J]. Dev. Appl. Mater., 2020, 35(2): 94
|
|
孙志杰, 王洋. 钛合金应力腐蚀研究现状及展望 [J]. 材料开发与应用, 2020, 35(2): 94
|
41 |
Liu J H, Hao X L, Li S M, et al. Resistance to stress corrosion cracking of new Al-Mg-Cu alloy containing Sc [J]. Chin. J. Nonferrous Met., 2010, 20: 415
|
|
刘建华, 郝雪龙, 李松梅等. 新型含钪Al-Mg-Cu合金的抗应力腐蚀开裂特性 [J]. 中国有色金属学报, 2010, 20: 415
|
42 |
Li Y. Stress corrosion cracking behavior and mechanism of E690 steel and welded joint in simulated seawater [D]. Beijing: University of Science and Technology Beijing, 2019
|
|
李永. E690钢及焊接接头模拟海水环境中应力腐蚀行为与机理研究 [D]. 北京: 北京科技大学, 2019
|
43 |
Yang Y, Cheng Y F. Effect of stress on corrosion at crack tip on pipeline steel in a near-neutral pH solution [J]. J. Mater. Eng. Perform., 2016, 25: 4988
|
44 |
Chang L, Kitamura T, Zhou C Y. Atomic simulation of the orientation effects on crack tip behavior in titanium single crystal [J]. Theoret. Appl. Fract. Mech., 2020, 110: 102791
|
45 |
Huang X Y, Zhu Z F, Wang D M, et al. A study of the mechanism of scc of titanium alloys [J]. J. Chin. Soc. Corros. Prot., 1982, 2(4): 37
|
|
黄显亚, 朱祖芳, 王得明等. 钛合金应力腐蚀开裂机理的研究 [J]. 中国腐蚀与防护学报, 1982, 2(4): 37
|
46 |
Zhao P, Su Y. Research progress in stress corrosion cracking of high-strength aluminum alloy [J]. Equip. Environ. Eng., 2016, 13(1): 130
|
|
赵鹏, 苏艳. 高强铝合金应力腐蚀开裂研究进展 [J]. 装备环境工程, 2016, 13(1): 130
|
47 |
Liu G L. Study of stress corrosion mechanism of Ti alloys by recursion method [J]. Acta Metall. Sin., 2007, 43: 249
|
|
刘贵立. 递归法研究钛合金应力腐蚀机理 [J]. 金属学报, 2007, 43: 249
|
48 |
Zhang J S. Strength of Materials [M]. Harbin: Harbin Institute of Technology Press, 2014: 322
|
|
张俊善. 材料强度学 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2014: 322
|
49 |
Zhang T J. Electron microscopy study on phase transformation of titanium alloy (Ⅵ)—Hydride in titanium alloy [J]. Rare Met. Mater. Eng., 1990, (1): 75
|
|
张廷杰. 钛合金相变的电子显微镜研究 (Ⅵ)—钛合金中的氢化物 [J]. 稀有金属材料与工程, 1990, (1): 75
|
50 |
Madina V, Azkarate I. Compatibility of materials with hydrogen. Particular case: Hydrogen embrittlement of titanium alloys [J]. Inter. J. Hydr. Energy, 2009, 34: 5976
|
51 |
Yan H, Liu H Y, Xi Y F, et al. Failure analysis for hydrogen embrittlement corrosion of TA10 pipe [J]. Petro Chem. Equip., 2019, 22(9): 94
|
|
燕辉, 刘鸿彦, 郗运富等. TA10换热管氢脆腐蚀的失效分析 [J]. 石油和化工设备, 2019, 22(9): 94
|
52 |
Guo M, Peng Q, Cui C J. Absorption hydrogen on the cathode effects on corrosion-resisting property of Ti in sea water [J]. Total Corros. Contr., 2002, 16(2): 9
|
|
郭敏, 彭乔, 崔昌军. 阴极充氢对钛在海水中耐蚀性能的影响 [J]. 全面腐蚀控制, 2002, 16(2): 9
|
53 |
Luo Q, Wang L, Liu S W. Effects of hydrogen on the performance of the TA16 titanium alloy [J]. Ordnan. Mater. Sci. Eng., 2011, 34(2): 51
|
|
罗强, 王理, 刘思维. 氢对TA16钛合金性能影响研究 [J]. 兵器材料科学与工程, 2011, 34(2): 51
|
54 |
Wang D M, Huang X Y, Zhu Z F. Study on the mechanism of hydrogen-induced damage in titanium by ultra-high pressure electron microscopy [J]. Rare Met., 1983, (5): 22
|
|
王得明, 黄显亚, 朱祖芳. 用超高压电镜研究钛中氢致破坏机理 [J]. 稀有金属, 1983, (5): 22
|
55 |
Xin S W, Zhao Y Q, Zeng W D. Inductions and discussions of solid state phase transformation of titanium alloy (Ⅱ)—eutectoid and ordering transformation [J]. Titanium Ind. Prog., 2008, 25(1): 40
|
|
辛社伟, 赵永庆, 曾卫东. 钛合金固态相变的归纳与讨论 (Ⅱ)—共析和有序化转变 [J]. 钛工业进展, 2008, 25(1): 40
|
56 |
Zhong Q P, Zhou Y, Zhang Z. Crackology [M]. Beijing: Higher Education Press, 2014: 136
|
|
钟群鹏, 周煜, 张峥. 裂纹学 [M]. 北京: 高等教育出版社, 2014: 136
|
57 |
Qiao Y X, Xu D K, Wang S, et al. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60: 168
|
58 |
Zhan S Y, Zheng B L, Xi Q. Analysis of hydrogen induced stress corrosion of cracked titanium alloy pressure vessel in deep sea environment [A]. 2017 Fourth Conference on Marine Materials and Corrosion Protection Proceedings [C]. Beijing, 2017: 6
|
|
詹思远, 郑百林, 席强. 带裂纹钛合金压力容器在深海环境中的氢致应力腐蚀分析 [A]. 2017第四届海洋材料与腐蚀防护大会论文集 [C]. 北京, 2017: 6
|
59 |
Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials [J]. J. Chin. Soc. Corros. Prot., 2021, 14: 1
|
|
董续成, 管方, 徐利婷等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展 [J]. 中国腐蚀与防护学报, 2021, 14: 1
|
60 |
Wang X T, Chen X, Han Z Z, et al. Stress corrosion cracking behavior of 2205 duplex stainless steel in 3.5%NaCl solution with sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 43
|
|
王欣彤, 陈旭, 韩镇泽等. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 43
|
61 |
Liu J, Li X B, Wang J. Effect of hydrostatic pressure on the corrosion behaviors of two low alloy steels [J]. Acta Metall. Sin., 2011, 47: 697
|
|
刘杰, 李相波, 王佳. 模拟深海压力对2种低合金钢腐蚀行为的影响 [J]. 金属学报, 2011, 47: 697
|
62 |
Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
|
|
周建龙, 李晓刚, 程学群等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47
|
63 |
Raoof M, Davies T J. Axial fatigue design of sheathed spiral strands in deep water applications [J]. Int. J. Fatigue, 2008, 30: 2220
|
64 |
Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
|
65 |
Wang X H, Fan L, Ding K K, et al. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64: 187
|
66 |
Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
|
67 |
Yang Y G, Zhang T, Shao Y W, et al. New understanding of the effect of hydrostatic pressure on the corrosion of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2013, 73: 250
|
68 |
Beccaria A M, Poggi G, Gingaud D, et al. Effect of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminium alloy in sea water [J]. Br. Corros. J., 1994, 29: 65
|
69 |
Beccaria A M, Poggi G, Castello G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30: 283
|
70 |
Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160: C89
|
71 |
Hu Y L, Wang Z Q, Zhao X, et al. Effect of alternation of hydrostatic pressure on corrosion behavior of high strength hull steel [J]. J. Naval Univ. Eng., 2018, 30(5): 69
|
|
胡裕龙, 王智峤, 赵欣等. 静水压力交变对高强度船体钢腐蚀行为的影响 [J]. 海军工程大学学报, 2018, 30(5): 69
|
72 |
Liu R, Cui Y, Liu L, et al. A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution [J]. Corros. Sci., 2020, 165: 108402
|
73 |
Wang J, Meng J, Tang X, et al. Assessment of corrosion behavior of steel in deep ocean [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 1
|
|
王佳, 孟洁, 唐晓等. 深海环境钢材腐蚀行为评价技术 [J]. 中国腐蚀与防护学报, 2007, 27: 1
|
74 |
Berthaud M, Popa I, Chassagnon R, et al. Study of titanium alloy Ti6242S oxidation behaviour in air at 560 ℃: Effect of oxygen dissolution on lattice parameters [J]. Corros. Sci., 2020, 164: 108049
|
75 |
Gong M, Huang W H, Zou Z, et al. Effect of dissolved oxygen in bittern on pitting behavior of 2205D stainless steel at different temperatures [J]. Mater. Prot., 2009, 42(10): 23
|
|
龚敏, 黄文恒, 邹振等. 2种温度下O2对2205DSS在盐卤介质中点蚀行为的影响 [J]. 材料保护, 2009, 42(10): 23
|
76 |
Wang J, Shang X C, Lu M X, et al. Pitting nucleation of 316L stainless steel in different environments [J]. J. Mater. Eng., 2015, 43(9): 12
|
|
王晶, 尚新春, 路民旭等. 316L不锈钢在不同环境中点蚀形核研究 [J]. 材料工程, 2015, 43(9): 12
|
77 |
Peng W C. Study of corrosion performance of aluminium alloy in seawater [D]. Changsha: Hunan University, 2010
|
|
彭文才. 铝合金在海水中的腐蚀性能研究 [D]. 长沙: 湖南大学, 2010
|
78 |
Nakagawa M, Matsuya S, Udoh K. Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys [J]. Dent. Mater. J., 2002, 21: 83
|
79 |
Dong J J, Fan L, Zhang H B, et al. Electrochemical performance of passive film formed on Ti-Al-Nb-Zr alloy in simulated deep sea environments [J]. Acta Metall. Sin. (Eng. Lett.), 2020, 33: 595
|
80 |
Hall Jr M M. Effect of variable stress intensity factor on hydrogen environment assisted cracking [J]. Metall. Mater. Trans., 2011, 42A: 304
|
81 |
Luo Q, Wang L, Chen X, et al. Studies on the corrosion behavior of TA16 and TA17 titanium alloys in high temperature and high pressure water [J]. Light Met., 2012, (2): 56
|
|
罗强, 王理, 陈新等. TA16和TA17钛合金在高温高压水中的腐蚀行为研究 [J]. 轻金属, 2012, (2): 56
|
82 |
Wataha J C. Principles of biocompatibility for dental practitioners [J]. J. Prosthet. Dent., 2001, 86: 203
|
83 |
Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
|
|
冉斗, 孟惠民, 刘星等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51
|
84 |
Jiang Y, Wu Y, Wang K. Acetic acid-direct corrosive mediator in SCC of titanium/ethanol system [J]. Mater. Corros., 2006, 57: 418
|
85 |
Zhang H W, Man C, Dong C F, et al. The corrosion behavior of Ti6Al4V fabricated by selective laser melting in the artificial saliva with different fluoride concentrations and pH values [J]. Corros. Sci., 2021, 179: 109097
|
86 |
Aladjem A, Aucouturier M, Lacombe P. Anodic oxidation and stress corrosion cracking (SCC) of titanium alloys [J]. J. Mater. Sci., 1973, 8: 787
|
87 |
Schutz R W. Environmental behavior of beta titanium alloys [J]. JOM, 1994, 46(7): 24
|
88 |
De Souza K A, Robin A. Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40% tantalum alloys and tantalum in sulfuric acid solutions [J]. Mater. Chem. Phys., 2007, 103: 351
|
89 |
Brown B F, Beachem C D. A study of the stress factor in corrosion cracking by use of the pre-cracked cantilever beam specimen [J]. Corros. Sci., 1965, 5(11): 745
|
90 |
Sanderson G, Scully J C. Room temperature stress corrosion cracking of Titanium alloys [J]. Nature, 1966, 5045: 179
|
91 |
Zhang Y K, Wang S C, Zhang Y H, et al. Effect of hydrogen on structure and properties of TC4 alloy in cyclic temperature field [J]. J. Funct. Mater. Contents, 2004, 35(suppl.): 3340
|
|
张云琨, 王树臣, 张艳鸿等. 循环温度场下氢对TC4钛合金组织和性能的影响 [J]. 功能材料, 2004, 35(): 3340
|
92 |
Scully J C, Powell D T. The stress corrosion cracking mechanism of α-titanium alloys at room temperature [J]. Corros. Sci., 1970, 10: 719
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|