Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 175-185    DOI: 10.11902/1005.4537.2021.050
Current Issue | Archive | Adv Search |
Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments
LIU Haochen1,2, FAN Lin2(), ZHANG Haibing2, WANG Yingying1(), TANG Junlei1, BAI Xuehan2, SUN Mingxian2
1.College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China
Download:  HTML  PDF(2568KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the survey of the application and research reports of Ti-alloy, this paper summarizes the cause and mechanism of stress corrosion cracking of Ti-alloy in deep sea environments, and discusses the effect of deep-sea environmental factors such as hydrostatic pressure, dissolved oxygen content, pH value and temperature on the stress corrosion cracking behavior. It is expected to provide a reference for the further study of stress corrosion cracking and other local corrosion types of titanium alloy, and to provide support for optimizing the microstructure and properties of Ti-alloy and the establishment of advanced Ti-alloy material for the deep sea engineering.

Key words:  Ti-alloy      deep sea      environmental factor      stress corrosion cracking      corrosion resistance     
Received:  16 March 2021     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51931008)
Corresponding Authors:  FAN Lin,WANG Yingying     E-mail:  fanl@sunrui.net;yingyingwanglyon@126.com
About author:  WANG Yingying, E-mail: yingyingwanglyon@126.com
FAN Lin, E-mail: fanl@sunrui.net

Cite this article: 

LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 175-185.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.050     OR     https://www.jcscp.org/EN/Y2022/V42/I2/175

Fig.1  Stress corrosion cracking morphologies of IMI 834 Ti-alloy: (a) crack initiation along the α/β interface, (b) crack propagation through the primary α grains, (c) transformation β matrix, (d) crack initiation and propagation along the α/β interface[29]
Fig.2  Corrosion potential of Ti, Ti-6Al-4V and Ti-6Al-7Nb Ti-alloyin open-air and non-O2 solution system[78]
Fig.3  Cross-section morphology of stress corrosion cracking of TC4 Ti-alloyin ethanol[84]
1 Lin J H, Dan Z H, Lu J F, et al. Research status and prospect on marine corrosion of titanium alloys in deep ocean environments [J]. Rare Met. Mater. Eng., 2020, 49: 1090
林俊辉, 淡振华, 陆嘉飞等. 深海腐蚀环境下钛合金海洋腐蚀的发展现状及展望 [J]. 稀有金属材料与工程, 2020, 49: 1090
2 Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
郭为民, 孙明先, 邱日等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313
3 Brown A, Wright R, Mevenkamp L, et al. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses [J]. Aquat. Toxicol., 2017, 191: 10
4 Fan W J, Zhang Y, Tian H W, et al. Corrosion behavior of two low alloy steel in simulative deep-sea environment coupling to titanium alloy [J]. Coll. Interf. Sci. Commun., 2019, 29: 40
5 Kark S, Brokovich E, Mazor T, et al. Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation [J]. Conserv. Biol., 2015, 29: 1573
6 He C Y, Zhang L J. Development and application of high temperature titanium alloy at home and abroad [J]. World Nonferr. Met., 2016, (1): 21
何春艳, 张利军. 国内外高温钛合金的发展与应用 [J]. 世界有色金属, 2016, (1): 21
7 Zhao Y Q, Ge P. Current situation and development of new titanium alloys invented in China [J]. J. Aeronaut. Mater., 2014, 34(4): 51
赵永庆, 葛鹏. 我国自主研发钛合金现状与进展 [J]. 航空材料学报, 2014, 34(4): 51
8 Pang J J, Blackwood D J. Corrosion of titanium alloys in high temperature near anaerobic seawater [J]. Corros. Sci., 2016, 105: 17
9 Yang X J, Liu Z Y, Zhang D W, et al. Stress corrosion cracking behavior of industrial pure titanium TA2 in sulfide containing deep seawater environment [J]. China Surf. Eng., 2019, 32(4): 17
杨小佳, 刘智勇, 张达威等. 工业纯钛TA2在含硫化物深海水环境中的应力腐蚀行为 [J]. 中国表面工程, 2019, 32(4): 17
10 Pilchak A L, Young A H, Williams J C. Stress corrosion cracking facet crystallography of Ti-8Al-1Mo-1V [J]. Corros. Sci., 2010, 52: 3287
11 Dong Y C, Fang Z G, Chang H, et al. Service performance of titanium alloy in marine environment [J]. Mater. China, 2020, 39: 185
董月成, 方志刚, 常辉等. 海洋环境下钛合金主要服役性能研究 [J]. 中国材料进展, 2020, 39: 185
12 Wu J X. Application of titanium alloy material on marine material [J]. Marine Equip./Mater. Market., 2020, (8): 5
吴建新. 钛合金材料在船舶材料上的应用 [J]. 船舶物资与市场, 2020, (8): 5
13 Yu Y, Li J Q. Current application and prospect of titanium alloys in marine engineering [J]. Dev. Appl. Mater., 2018, 33(3): 111
于宇, 李嘉琪. 国内外钛合金在海洋工程中的应用现状与展望 [J]. 材料开发与应用, 2018, 33(3): 111
14 Breddermann K, Drescher P, Polzin C, et al. Printed pressure housings for underwater applications [J]. Ocean Eng., 2016, 113: 57
15 Li D Q, Wang S S, Bao E D. Titanium alloy material in the ship in the material application and development [J]. World Nonferr. Met., 2015, (9): 127
李德强, 王树森, 包恩达. 钛合金材料在船舶材料上的应用与发展 [J]. 世界有色金属, 2015, (9): 127
16 Li L S, Xu W S, Chen W H, et al. Application of titanium alloy in seawater piping of aluminum alloy warship [J]. Ship Boat, 2016, 27(3): 27
黎理胜, 徐文珊, 陈万宏等. 钛合金在铝合金舰船海水管路系统的应用 [J]. 船舶, 2016, 27(3): 27
17 Song D J, Niu L, Yang S L. Research on application technology of titanium alloy in marine pipeline [J]. Rare Met. Mater. Eng., 2020, 49: 1100
宋德军, 牛龙, 杨胜利. 船舶海水管路钛合金应用技术研究 [J]. 稀有金属材料与工程, 2020, 49: 1100
18 Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications [M]. Weinheim: Wiley-VCH, 2003: 491
19 Li X J, Wang G, Yang Y L, et al. The development and application of titanium and titanium alloys in ocean and land oil & gas exploiting industry [J]. China Titanium Ind., 2011, (2): 18
李献军, 王镐, 羊玉兰等. 钛及钛合金在海洋和大陆油气开采工业中的开发和应用 [J]. 中国钛业, 2011, (2): 18
20 Withers P J. Residual stress and its role in failure [J]. Rep. Prog. Phys., 2007, 70: 2211
21 Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials [J]. Chin. J. Eng., 2019, 41: 929
陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响 [J]. 工程科学学报, 2019, 41: 929
22 Wang J, Jin T, Ma Y M, et al. Stress corrosion cracking behavior of 2507 duplex stainless steel under high residual stress [J]. Pressure Vessel Technol., 2020, 37(3): 50
王军, 靳彤, 马一鸣等. 高残余应力下2507双相不锈钢应力腐蚀开裂行为 [J]. 压力容器, 2020, 37(3): 50
23 Bai L Y, Jiang K B, Gao L, et al. Influence mechanism of residual stress on stress corrosion behavior of welded structure [J]. Hot Work. Technol., 2017, 46(21): 168
白林越, 江克斌, 高磊等. 残余应力对焊接结构应力腐蚀行为影响机理研究 [J]. 热加工工艺, 2017, 46(21): 168
24 Pan W W, Chen M C, Li B, et al. Analysis of the influence mechanism of residual stress on the stress corrosion behavior of welded structure [J]. Equip. Technol., 2019, (4): 118
潘文伟, 陈民昌, 李兵等. 残余应力对焊接结构应力腐蚀行为影响机理分析 [J]. 装备维修技术, 2019, (4): 118
25 Zhu J. Study on the effects and mechanism of deep cryogenic treatment time on organization and properties of electron-beam-welded TC4 joints [D]. Tianjin: Tianjin University, 2017
朱江. 深冷处理时间对TC4钛合金电子束焊接接头组织、性能的影响及机理研究 [D]. 天津: 天津大学, 2017
26 Yu C Y. Development of corrosion resistant titanium alloys [J]. Titanium Ind. Prog., 2003, (1): 12
余存烨. 耐蚀钛合金的发展 [J]. 钛工业进展, 2003, (1): 12
27 Atapour M, Pilchak A L, Shamanian M, et al. Corrosion behavior of Ti-8Al-1Mo-1V alloy compared to Ti-6A1-4V [J]. Mater. Des., 2011, 32: 1692
28 Yang W T, Long X Q. Special corrosion types of titanium alloy used in civil aircraft [J]. Total Corros. Contr., 2008, 22(2): 42
杨文涛, 隆小庆. 飞机上钛合金的特殊腐蚀形式 [J]. 全面腐蚀控制, 2008, 22(2): 42
29 Pustode M D, Raja V S, Paulose N. The stress-corrosion cracking susceptibility of near-α titanium alloy IMI 834 in presence of hot salt [J]. Corros. Sci., 2014, 82: 191
30 Jiang C Y, Wang T, Yan Q, et al. Research on welding application of titanium alloy used in ships [J]. Dev. Appl. Mater., 1992, (6): 16
蒋成禹, 汪汀, 严铿等. 舰船用钛合金的焊接应用研究 [J]. 材料开发与应用, 1992, (6): 16
31 Shamir M, Junaid M, Khan F N, et al. A comparative study of electrochemical corrosion behavior in Laser and TIG welded Ti-5Al-2.5Sn alloy [J]. J. Mater. Res. Technol., 2019, 8: 87
32 Karimzadeh F, Heidarbeigy M, Saatchi A. Effect of heat treatment on corrosion behavior of Ti-6Al-4V alloy weldments [J]. J. Mater. Proc. Technol., 2008, 206: 388
33 Fang W P, Xiao T, Zhang Y P, et al. Stress corrosion crack sensitivity of ultra-thick TC4 titanium alloy electron beam welding joints [J]. Trans. China Weld. Instit., 2019, 40: 121
房卫萍, 肖铁, 张宇鹏等. 超厚板TC4钛合金电子束焊接接头应力腐蚀敏感性 [J]. 焊接学报, 2019, 40: 121
34 Shukla A K, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13.4Al-29Nb alloys in simulated human body conditions [J]. Intermetallics, 2005, 13: 631
35 Diao Y W. The study on tensile behavior of Ti-Al-Sn-Zr-Mo-Nb-W-Si high temperature titanium alloy at 700 ℃ [D]. Beijing: General Research Institute for Nonferrous Metals, 2019
刁雨薇. Ti-Al-Sn-Zr-Mo-Nb-W-Si高温钛合金700 ℃拉伸行为研究 [D]. 北京: 北京有色金属研究总院, 2019
36 Shi K Y, Wu W J, Zhang Y, et al. Electrochemical properties of Nb coating on TC4 substrate in simulated body solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 71
史昆玉, 吴伟进, 张毅等. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 71
37 Wang L, Yi D Q, Liu H Q, et al. Effect of Ru on corrosion behavior of Ti-6Al-4V alloy and its mechanism [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 25
王乐, 易丹青, 刘会群等. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究 [J]. 中国腐蚀与防护学报, 2020, 40: 25
38 Wu X F, Yang H Q, Wang C Y. Effect of manganese addition on microstructure and mechanical properties of Ti-Mo biomedical alloys [J]. Chin. J. Nonferrous Met., 2017, 27: 1902
武晓峰, 杨会齐, 王春雨. Mn对生物医用Ti-Mo合金组织与力学性能的影响 [J]. 中国有色金属学报, 2017, 27: 1902
39 Zhang R. The study on susceptibility to stress corrosion carcking and hydrogen embrittlement of titanium and titanium alloy in seawater [D]. Hohhot: Inner Mongolia University of Technology, 2013
张睿. 钛及钛合金在海水中的应力腐蚀及氢脆敏感性研究 [D]. 呼和浩特: 内蒙古工业大学, 2013
40 Sun Z J, Wang Y. Research status and prospect of the stress-corrosion of titanium alloys [J]. Dev. Appl. Mater., 2020, 35(2): 94
孙志杰, 王洋. 钛合金应力腐蚀研究现状及展望 [J]. 材料开发与应用, 2020, 35(2): 94
41 Liu J H, Hao X L, Li S M, et al. Resistance to stress corrosion cracking of new Al-Mg-Cu alloy containing Sc [J]. Chin. J. Nonferrous Met., 2010, 20: 415
刘建华, 郝雪龙, 李松梅等. 新型含钪Al-Mg-Cu合金的抗应力腐蚀开裂特性 [J]. 中国有色金属学报, 2010, 20: 415
42 Li Y. Stress corrosion cracking behavior and mechanism of E690 steel and welded joint in simulated seawater [D]. Beijing: University of Science and Technology Beijing, 2019
李永. E690钢及焊接接头模拟海水环境中应力腐蚀行为与机理研究 [D]. 北京: 北京科技大学, 2019
43 Yang Y, Cheng Y F. Effect of stress on corrosion at crack tip on pipeline steel in a near-neutral pH solution [J]. J. Mater. Eng. Perform., 2016, 25: 4988
44 Chang L, Kitamura T, Zhou C Y. Atomic simulation of the orientation effects on crack tip behavior in titanium single crystal [J]. Theoret. Appl. Fract. Mech., 2020, 110: 102791
45 Huang X Y, Zhu Z F, Wang D M, et al. A study of the mechanism of scc of titanium alloys [J]. J. Chin. Soc. Corros. Prot., 1982, 2(4): 37
黄显亚, 朱祖芳, 王得明等. 钛合金应力腐蚀开裂机理的研究 [J]. 中国腐蚀与防护学报, 1982, 2(4): 37
46 Zhao P, Su Y. Research progress in stress corrosion cracking of high-strength aluminum alloy [J]. Equip. Environ. Eng., 2016, 13(1): 130
赵鹏, 苏艳. 高强铝合金应力腐蚀开裂研究进展 [J]. 装备环境工程, 2016, 13(1): 130
47 Liu G L. Study of stress corrosion mechanism of Ti alloys by recursion method [J]. Acta Metall. Sin., 2007, 43: 249
刘贵立. 递归法研究钛合金应力腐蚀机理 [J]. 金属学报, 2007, 43: 249
48 Zhang J S. Strength of Materials [M]. Harbin: Harbin Institute of Technology Press, 2014: 322
张俊善. 材料强度学 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2014: 322
49 Zhang T J. Electron microscopy study on phase transformation of titanium alloy (Ⅵ)—Hydride in titanium alloy [J]. Rare Met. Mater. Eng., 1990, (1): 75
张廷杰. 钛合金相变的电子显微镜研究 (Ⅵ)—钛合金中的氢化物 [J]. 稀有金属材料与工程, 1990, (1): 75
50 Madina V, Azkarate I. Compatibility of materials with hydrogen. Particular case: Hydrogen embrittlement of titanium alloys [J]. Inter. J. Hydr. Energy, 2009, 34: 5976
51 Yan H, Liu H Y, Xi Y F, et al. Failure analysis for hydrogen embrittlement corrosion of TA10 pipe [J]. Petro Chem. Equip., 2019, 22(9): 94
燕辉, 刘鸿彦, 郗运富等. TA10换热管氢脆腐蚀的失效分析 [J]. 石油和化工设备, 2019, 22(9): 94
52 Guo M, Peng Q, Cui C J. Absorption hydrogen on the cathode effects on corrosion-resisting property of Ti in sea water [J]. Total Corros. Contr., 2002, 16(2): 9
郭敏, 彭乔, 崔昌军. 阴极充氢对钛在海水中耐蚀性能的影响 [J]. 全面腐蚀控制, 2002, 16(2): 9
53 Luo Q, Wang L, Liu S W. Effects of hydrogen on the performance of the TA16 titanium alloy [J]. Ordnan. Mater. Sci. Eng., 2011, 34(2): 51
罗强, 王理, 刘思维. 氢对TA16钛合金性能影响研究 [J]. 兵器材料科学与工程, 2011, 34(2): 51
54 Wang D M, Huang X Y, Zhu Z F. Study on the mechanism of hydrogen-induced damage in titanium by ultra-high pressure electron microscopy [J]. Rare Met., 1983, (5): 22
王得明, 黄显亚, 朱祖芳. 用超高压电镜研究钛中氢致破坏机理 [J]. 稀有金属, 1983, (5): 22
55 Xin S W, Zhao Y Q, Zeng W D. Inductions and discussions of solid state phase transformation of titanium alloy (Ⅱ)—eutectoid and ordering transformation [J]. Titanium Ind. Prog., 2008, 25(1): 40
辛社伟, 赵永庆, 曾卫东. 钛合金固态相变的归纳与讨论 (Ⅱ)—共析和有序化转变 [J]. 钛工业进展, 2008, 25(1): 40
56 Zhong Q P, Zhou Y, Zhang Z. Crackology [M]. Beijing: Higher Education Press, 2014: 136
钟群鹏, 周煜, 张峥. 裂纹学 [M]. 北京: 高等教育出版社, 2014: 136
57 Qiao Y X, Xu D K, Wang S, et al. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60: 168
58 Zhan S Y, Zheng B L, Xi Q. Analysis of hydrogen induced stress corrosion of cracked titanium alloy pressure vessel in deep sea environment [A]. 2017 Fourth Conference on Marine Materials and Corrosion Protection Proceedings [C]. Beijing, 2017: 6
詹思远, 郑百林, 席强. 带裂纹钛合金压力容器在深海环境中的氢致应力腐蚀分析 [A]. 2017第四届海洋材料与腐蚀防护大会论文集 [C]. 北京, 2017: 6
59 Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials [J]. J. Chin. Soc. Corros. Prot., 2021, 14: 1
董续成, 管方, 徐利婷等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展 [J]. 中国腐蚀与防护学报, 2021, 14: 1
60 Wang X T, Chen X, Han Z Z, et al. Stress corrosion cracking behavior of 2205 duplex stainless steel in 3.5%NaCl solution with sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 43
王欣彤, 陈旭, 韩镇泽等. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 43
61 Liu J, Li X B, Wang J. Effect of hydrostatic pressure on the corrosion behaviors of two low alloy steels [J]. Acta Metall. Sin., 2011, 47: 697
刘杰, 李相波, 王佳. 模拟深海压力对2种低合金钢腐蚀行为的影响 [J]. 金属学报, 2011, 47: 697
62 Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
周建龙, 李晓刚, 程学群等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47
63 Raoof M, Davies T J. Axial fatigue design of sheathed spiral strands in deep water applications [J]. Int. J. Fatigue, 2008, 30: 2220
64 Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
65 Wang X H, Fan L, Ding K K, et al. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64: 187
66 Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
67 Yang Y G, Zhang T, Shao Y W, et al. New understanding of the effect of hydrostatic pressure on the corrosion of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2013, 73: 250
68 Beccaria A M, Poggi G, Gingaud D, et al. Effect of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminium alloy in sea water [J]. Br. Corros. J., 1994, 29: 65
69 Beccaria A M, Poggi G, Castello G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30: 283
70 Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160: C89
71 Hu Y L, Wang Z Q, Zhao X, et al. Effect of alternation of hydrostatic pressure on corrosion behavior of high strength hull steel [J]. J. Naval Univ. Eng., 2018, 30(5): 69
胡裕龙, 王智峤, 赵欣等. 静水压力交变对高强度船体钢腐蚀行为的影响 [J]. 海军工程大学学报, 2018, 30(5): 69
72 Liu R, Cui Y, Liu L, et al. A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution [J]. Corros. Sci., 2020, 165: 108402
73 Wang J, Meng J, Tang X, et al. Assessment of corrosion behavior of steel in deep ocean [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 1
王佳, 孟洁, 唐晓等. 深海环境钢材腐蚀行为评价技术 [J]. 中国腐蚀与防护学报, 2007, 27: 1
74 Berthaud M, Popa I, Chassagnon R, et al. Study of titanium alloy Ti6242S oxidation behaviour in air at 560 ℃: Effect of oxygen dissolution on lattice parameters [J]. Corros. Sci., 2020, 164: 108049
75 Gong M, Huang W H, Zou Z, et al. Effect of dissolved oxygen in bittern on pitting behavior of 2205D stainless steel at different temperatures [J]. Mater. Prot., 2009, 42(10): 23
龚敏, 黄文恒, 邹振等. 2种温度下O2对2205DSS在盐卤介质中点蚀行为的影响 [J]. 材料保护, 2009, 42(10): 23
76 Wang J, Shang X C, Lu M X, et al. Pitting nucleation of 316L stainless steel in different environments [J]. J. Mater. Eng., 2015, 43(9): 12
王晶, 尚新春, 路民旭等. 316L不锈钢在不同环境中点蚀形核研究 [J]. 材料工程, 2015, 43(9): 12
77 Peng W C. Study of corrosion performance of aluminium alloy in seawater [D]. Changsha: Hunan University, 2010
彭文才. 铝合金在海水中的腐蚀性能研究 [D]. 长沙: 湖南大学, 2010
78 Nakagawa M, Matsuya S, Udoh K. Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys [J]. Dent. Mater. J., 2002, 21: 83
79 Dong J J, Fan L, Zhang H B, et al. Electrochemical performance of passive film formed on Ti-Al-Nb-Zr alloy in simulated deep sea environments [J]. Acta Metall. Sin. (Eng. Lett.), 2020, 33: 595
80 Hall Jr M M. Effect of variable stress intensity factor on hydrogen environment assisted cracking [J]. Metall. Mater. Trans., 2011, 42A: 304
81 Luo Q, Wang L, Chen X, et al. Studies on the corrosion behavior of TA16 and TA17 titanium alloys in high temperature and high pressure water [J]. Light Met., 2012, (2): 56
罗强, 王理, 陈新等. TA16和TA17钛合金在高温高压水中的腐蚀行为研究 [J]. 轻金属, 2012, (2): 56
82 Wataha J C. Principles of biocompatibility for dental practitioners [J]. J. Prosthet. Dent., 2001, 86: 203
83 Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
冉斗, 孟惠民, 刘星等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51
84 Jiang Y, Wu Y, Wang K. Acetic acid-direct corrosive mediator in SCC of titanium/ethanol system [J]. Mater. Corros., 2006, 57: 418
85 Zhang H W, Man C, Dong C F, et al. The corrosion behavior of Ti6Al4V fabricated by selective laser melting in the artificial saliva with different fluoride concentrations and pH values [J]. Corros. Sci., 2021, 179: 109097
86 Aladjem A, Aucouturier M, Lacombe P. Anodic oxidation and stress corrosion cracking (SCC) of titanium alloys [J]. J. Mater. Sci., 1973, 8: 787
87 Schutz R W. Environmental behavior of beta titanium alloys [J]. JOM, 1994, 46(7): 24
88 De Souza K A, Robin A. Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40% tantalum alloys and tantalum in sulfuric acid solutions [J]. Mater. Chem. Phys., 2007, 103: 351
89 Brown B F, Beachem C D. A study of the stress factor in corrosion cracking by use of the pre-cracked cantilever beam specimen [J]. Corros. Sci., 1965, 5(11): 745
90 Sanderson G, Scully J C. Room temperature stress corrosion cracking of Titanium alloys [J]. Nature, 1966, 5045: 179
91 Zhang Y K, Wang S C, Zhang Y H, et al. Effect of hydrogen on structure and properties of TC4 alloy in cyclic temperature field [J]. J. Funct. Mater. Contents, 2004, 35(suppl.): 3340
张云琨, 王树臣, 张艳鸿等. 循环温度场下氢对TC4钛合金组织和性能的影响 [J]. 功能材料, 2004, 35(): 3340
92 Scully J C, Powell D T. The stress corrosion cracking mechanism of α-titanium alloys at room temperature [J]. Corros. Sci., 1970, 10: 719
[1] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[2] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[3] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[4] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[5] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[6] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[7] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[8] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[9] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[10] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[11] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[12] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[13] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[14] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[15] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
No Suggested Reading articles found!