|
|
Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater |
ZHANG Chengdong, LIU Bin(), SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui |
Beijing Key Laboratory of Materials Electrochemical Process and Technology, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China |
|
|
Abstract How to improve the comprehensive performance of nickel-aluminum bronze (NAB) alloys, has become an imperious demand, especially their corrosion resistance in more severe seawater environments. In this paper, the corrosion characteristics of NAB alloys and the relevant influencing factors were systematically discussed. The common methods of improving corrosion resistance, such as surface modification and casting processing were proposed. It is expected that the corrosion resistance of NAB alloys can be further improved with appropriate alloying approach and adjusting of the alloy composition. Finally, the future research and development directions were also prospected.
|
Received: 03 November 2020
|
|
Fund: Fundamental Research Funds for the Central Universities of China(buctrc201730) |
Corresponding Authors:
LIU Bin
E-mail: liubin@mail.buct.edu.cn;liubindr@163.com
|
About author: LIU Bin, E-mail: liubin@mail.buct.edu.cn
|
1 |
Song D J, Hu G Y, Lu H, et al. Survey of progress on the research and practice of Nickel-Aluminium braze [J]. Mater. Rep., 2007, 21(S3): 450
|
|
宋德军, 胡光远, 卢海等. 镍铝青铜合金的应用与研究现状 [J]. 材料导报, 2007, 21(S3): 450
|
2 |
Nie W, Yao X H, Lu B C. Technical of heavy duty coatings for marine engineering [J]. Mar. Technol., 2016, (6): 82
|
|
聂薇, 姚晓红, 卢本才. 海洋工程重防腐技术 [J]. 造船技术, 2016, (6): 82
|
3 |
Zhang Z Q, Guo Z L, Lei Z F. Applications of copper alloy in shipbuilding [J]. Dev. Appl. Mater., 2006, 21(5): 43
|
|
张智强, 郭泽亮, 雷竹芳. 铜合金在舰船上的应用 [J]. 材料开发与应用, 2006, 21(5): 43
|
4 |
Tan K S, Wharton J A, Wood R J K. Solid particle erosion-corrosion behaviour of a novel HVOF nickel aluminium bronze coating for marine applications-correlation between mass loss and electrochemical measurements [J]. Wear, 2005, 258: 629
|
5 |
Barik R C, Wharton J A, Wood R J K, et al. Erosion and erosion-corrosion performance of cast and thermally sprayed nickel-aluminium bronze [J]. Wear, 2005, 259: 230
|
6 |
Hasan F, Jahanafrooz A, Lorimer G W, et al. The morphology, crystallography, and chemistry of phases in as-cast nickel-aluminum bronze [J]. Metall. Trans., 1982, 13A: 1337
|
7 |
Wu Z, Cheng Y F, Liu L, et al. Effect of heat treatment on microstructure evolution and erosion-corrosion behavior of a nickel-aluminum bronze alloy in chloride solution [J]. Corros. Sci., 2015, 98: 260
|
8 |
Müller S, Wolverton C, Wang L W, et al. Prediction of alloy precipitate shapes from first principles [J]. Europhys. Lett., 2001, 55: 33
|
9 |
Culpan E A, Rose G. Microstructural characterization of cast nickel aluminium bronze [J]. J. Mater. Sci., 1978, 13: 1647
|
10 |
Neodo S, Carugo D, Wharton J A, et al. Electrochemical behaviour of nickel-aluminium bronze in chloride media: Influence of pH and benzotriazole [J]. J. Electroanal. Chem., 2013, 695: 38
|
11 |
Kear G, Barker B D, Stokes K, et al. Flow influenced electrochemical corrosion of nickel aluminium bronze-part I. Cathodic polarisation [J]. J. Appl. Electrochem., 2004, 34: 1235
|
12 |
Kear G, Barker B D, Stokes K, et al. Flow influenced electrochemical corrosion of nickel aluminium bronze-part II. Anodic polarisation and derivation of the mixed potential [J]. J. Appl. Electrochem., 2004, 34: 1241
|
13 |
Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media-a critical review [J]. Corros. Sci., 2004, 46: 109
|
14 |
Badawy W A, El-Sherif R M, Shehata H. Electrochemical stability of Cu-10Al-5Ni alloy in chloride-sulfate electrolytes [J]. Electrochim. Acta, 2009, 54: 4501
|
15 |
Wang Y M, Sigler D R, Radovic D. Corrosion of copper braze alloys in sulfidecontaining water [A]. Proceedings of Corrosion 2008 [C]. New Orleans, LA, USA, 2008: 22
|
16 |
Badawy W A, El-Sherif R M, Shehata H. Electrochemical behavior of aluminum bronze in sulfate-chloride media [J]. J. Appl. Electrochem., 2007, 37: 1099
|
17 |
Rajahram S S, Harvey T J, Wood R J K. Erosion-corrosion resistance of engineering materials in various test conditions [J]. Wear, 2009, 267: 244
|
18 |
Dai S L. Cast Non-Ferrous Alloy [M]. 3rd ed. Beijing: China Machine Press, 2011
|
|
戴圣龙. 铸造非铁合金 [M]. 3版. 北京: 机械工业出版社, 2011
|
19 |
Tsyrul'nyk O T. Influence of temperature on the corrosion, corrosion fatigue, and cavitation fracture of steel in tap water [J]. Mater. Sci., 2000, 36: 136
|
20 |
Tuthill A H. Guidelines for the use of copper alloys in seawater [J]. Mater. Perform., 1987, 26: 12
|
21 |
Schüssler A, Exner H E. The corrosion of nickel-aluminium bronzes in seawater-I. Protective layer formation and the passivation mechanism [J]. Corros. Sci., 1993, 34: 1793
|
22 |
Schüssler A, Exner H E. The corrosion of nickel-aluminium bronzes in seawater—II. The corrosion mechanism in the presence of sulphide pollution [J]. Corros. Sci., 1993, 34: 1803
|
23 |
Wharton J A, Barik R C, Kear G, et al. The corrosion of nickel-aluminium bronze in seawater [J]. Corros. Sci., 2005, 47: 3336
|
24 |
Zhang Z, Yao L A, Gan F X. The effect of surface film on electrochemical behavior of Cu-Ni-alloy [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 143
|
|
张哲, 姚禄安, 甘复兴. 铜镍合金表面膜对其电化学行为的影响 [J]. 中国腐蚀与防护学报, 1987, 7: 143
|
25 |
Ding Y, Zhao R, Qin Z B, et al. Evolution of the corrosion product film on nickel-aluminum bronze and its corrosion behavior in 3.5wt%NaCl solution [J]. Materials, 2019, 12: 209
|
26 |
El-Meligi A A. Corrosion behaviours of copper alloy in solutions containing Na2SO4 and NaCl with different concentrations [J]. J. Mater. Sci. Technol., 2002, 18: 549
|
27 |
Wharton J A, Stokes K R. The influence of nickel-aluminium bronze microstructure and crevice solution on the initiation of crevice corrosion [J]. Electrochim. Acta, 2008, 53: 2463
|
28 |
Fonlupt S, Bayle B, Delafosse D, et al. Role of second phases in the stress corrosion cracking of a nickel-aluminium bronze in saline water [J]. Corros. Sci., 2005, 47: 2792
|
29 |
Al-Hashem A, Riad W. The role of microstructure of nickel-aluminium-bronze alloy on its cavitation corrosion behavior in natural seawater [J]. Mater. Charact., 2002, 48: 37
|
30 |
Huang G Q. Corrosion of copper alloys in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 65
|
|
黄桂桥. 铜合金在海洋飞溅区的腐蚀 [J]. 中国腐蚀与防护学报, 2005, 25: 65
|
31 |
Tang C H, Cheng F T, Man H C. Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting [J]. Surf. Coat. Technol., 2004, 182: 300
|
32 |
Tang C H, Cheng F T, Man H C. Effect of laser surface melting on the corrosion and cavitation erosion behaviors of a manganese-nickel-aluminium bronze [J]. Mater. Sci. Eng., 2004, 373A: 195
|
33 |
Zhu J, Jiang Y J, He D C. Comparison of copper alloy for marine propeller manufacture [J]. Mar. Technol., 2019, (6): 64
|
|
朱晶, 姜元军, 何大川. 船用螺旋桨常用铜合金材料比较 [J]. 造船技术, 2019, (6): 64
|
34 |
Carlton J S. Marine Propellers and Propulsion [M]. 3rd ed. Britain: Butterworth-Heinemann, 2012: 4
|
35 |
Jin C Z, Zhang S, Chen S P. Discussion of anti-corrosion and anti-fouling painting process for propeller [J]. Mar. Technol., 2013, (4): 39
|
|
金承泽, 张松, 陈松培. 船舶螺旋桨防腐防污涂装工艺的探讨 [J]. 造船技术, 2013, (4): 39
|
36 |
Li K, Zhai X F, Guan F, et al. Progress on materials and protection technologies for marine propeller [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 495
|
|
李科, 翟晓芳, 管芳等. 船用螺旋桨防护技术及其材料研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 495
|
37 |
Li X G. Corrosion and Protection of Materials [M]. Changsha: Central South University Press, 2009: 94
|
|
李晓刚. 材料腐蚀与防护 [M]. 长沙: 中南大学出版社, 2009: 94
|
38 |
Wood R J K, Fry S A. The synergistic effect of cavitation erosion and corrosion for copper and cupro-nickel in seawater [J]. J. Fluids Eng., 1989, 111: 271
|
39 |
Song Q N, Zheng Y G, Jiang S L, et al. Comparison of corrosion and cavitation erosion behaviors between the as-cast and friction-stir-processed nickel aluminum bronze [J]. Corrosion, 2013, 69: 1111
|
40 |
Zhang L M, Ma A L, Yu H, et al. Correlation of microstructure with cavitation erosion behaviour of a nickel-aluminum bronze in simulated seawater [J]. Tribol. Int., 2019, 136: 250
|
41 |
Richman R H, McNaughton W P. Correlation of cavitation erosion behavior with mechanical properties of metals [J]. Wear, 1990, 140: 63
|
42 |
Będkowski W, Gasiak G, Lachowicz C, et al. Relations between cavitation erosion resistance of materials and their fatigue strength under random loading [J]. Wear, 1999, 230: 201
|
43 |
Thiruvengadam A, Waring S. Mechanical properties of metals and their cavitation-damage resistance [J]. J. Ship Res., 1966, 10: 1
|
44 |
Tirupataiah Y, Sundararajan G. Evaluation of microhardness correction procedures [J]. Wear, 1986, 110: 183
|
45 |
Zhang X F, Fang L. The effect of stacking fault energy on the cavitation erosion resistance of α-phase aluminum bronzes [J]. Wear, 2002, 253: 1105
|
46 |
Yu H, Zheng Y G, Yao Z M. Cavitation erosion corrosion behaviour of manganese-nickel-aluminum bronze in comparison with manganese-brass [J]. J. Mater. Sci. Technol., 2009, 25: 758
|
47 |
Suh N P, Saka N. The stacking fault energy and delamination wear of single-phase f. c. c. metals [J]. Wear, 1977, 44: 135
|
48 |
Li Q, Tang X, Li Y. Progress in research methods for erosion-corrosion [J]. J. Chin. Soc. Corros. Prot, 2014, 34: 399
|
|
李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2014, 34: 399
|
49 |
Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
|
|
朱娟, 张乔斌, 陈宇等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
|
50 |
Du J, Wang H R, Du M, et al. Electrochemical corrosion behavior of 90/10 Cu-Ni alloy in flowing seawater [J]. Corros. Sci. Prot. Technol., 2008, 20: 12
|
|
杜娟, 王洪仁, 杜敏等. B10铜镍合金流动海水冲刷腐蚀电化学行为 [J]. 腐蚀科学与防护技术, 2008, 20: 12
|
51 |
Luo Y N. In field electrochemical detection and erosion-corrosion investigation of metallic materials in marine environment [D]. Tianjin: Tianjin University, 2006
|
|
雒娅楠. 海洋环境中金属材料现场电化学检测及冲刷腐蚀研究[D]. 天津大学, 2006
|
52 |
Cheng F, Jiang S Y. Cavitation erosion resistance of diamond-like carbon coating on stainless steel [J]. Appl. Surf. Sci., 2014, 292: 16
|
53 |
Wood R J K. Erosion-corrosion interactions and their effect on marine and offshore materials [J]. Wear, 2006, 261: 1012
|
54 |
Shen C, Pan Z X, Ding D H, et al. The influence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process [J]. Addit. Manuf., 2018, 23: 411
|
55 |
Anantapong J, Uthaisangsuk V, Suranuntchai S, et al. Effect of hot working on microstructure evolution of as-cast nickel aluminum bronze alloy [J]. Mater. Des., 2014, 60: 233
|
56 |
Ji W. Effect of rare-earth on the as-cast structure and some properties of two kinds of bronzes and some properties of two kinds of bronzes [J]. Foundry, 1995, (5): 14
|
|
季玮. 稀土对两种青铜的铸态组织和某些性能影响的研究 [J]. 铸造, 1995, (5): 14
|
57 |
Wang D, Li Y, Sun B B, et al. Bulk metallic glass formation in the binary Cu-Zr system [J]. Appl. Phys. Lett., 2004, 84: 4029
|
58 |
Takaloo A V, Daroonparvar M R, Atabaki M M, et al. Corrosion behavior of heat treated nickel-aluminum bronze alloy in artificial seawater [J]. Mater. Sci. Appl., 2011, 2: 1542
|
59 |
Chen R P, Liang Z Q, Zhang W W, et al. Effect of heat treatment on microstructure and properties of hot-extruded nickel-aluminum bronze [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 1254
|
60 |
Zeng Y H, Yang F F, Chen Z N, et al. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61: 186
|
61 |
Shi X, Song D J, Hu W M. Research on microstructure of deforming nickel-aluminium bronze alloy [J]. Mater. Heat Treat., 2009, 38(10): 42
|
|
史鑫, 宋德军, 胡伟民. 新型镍铝青铜组织合金研究 [J]. 材料热处理技术, 2009, 38(10): 42
|
62 |
Yu H, Zheng Y G, Yao Z M, et al. Cavitation erosion behavior of a cast nickel-aluminum bronze in 2.4%NaCl solution [J]. Corros. Sci. Prot. Technol., 2007, 19: 181
|
|
于宏, 郑玉贵, 姚治铭等. ZQAl9-4-4-2镍铝青铜在2.4%NaCl溶液中的空蚀行为 [J]. 腐蚀科学与防护技术, 2007, 19: 181
|
63 |
Oh-ishi K, Cuevas A M, Swisher D L, et al. The influence of friction stir processing on microstructure and properties of a cast nickel aluminum bronze material [J]. Mater. Sci. Forum, 2003, 426-432: 2885
|
64 |
Wang L, Xu X L, Xu J J, et al. Microstructures and properties of PVD aluminum bronze coatings [J]. Thin Solid Films, 2000, 376: 159
|
65 |
Tan K S, Wood R J K, Stokes K R. The slurry erosion behaviour of high velocity oxy-fuel (HVOF) sprayed aluminium bronze coatings [J]. Wear, 2003, 255: 195
|
66 |
Cottam R, Barry T, McDonald D, et al. Laser processing of nickel-aluminum bronze for improved surface corrosion properties [J]. J. Laser Appl., 2013, 25: 032009
|
67 |
Dong Z, Peng X, Guan Y, et al. Optimization of composition and structure of electrodeposited Ni-Cr composites for increasing the oxidation resistance [J]. Corros. Sci., 2012, 62: 147
|
68 |
Nandan R, DebRoy T, Bhadeshi H K D H. Recent advances in friction-stir welding-process, weldment structure and properties [J]. Prog. Mater. Sci., 2008, 53: 980
|
69 |
Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, 50R: 1
|
70 |
Zhang G F, Wei Z X, Zhang J, et al. Friction Stir Process (FSP)-A new green process for enhancing metal surface intensity [J]. Welded Pipe Tube, 2009, 32(12): 23
|
|
张贵锋, 韦中兴, 张军等. 搅拌摩擦处理 (FSP)-一种新型绿色表面强化技术 [J]. 焊管, 2009, 32(12): 23
|
71 |
Lotfollahi M, Shamanian M, Saatchi A. Effect of friction stir processing on erosion-corrosion behavior of nickel-aluminum bronze [J]. Mater. Des., 2014, 62: 282
|
72 |
Ni D R, Xiao B L, Ma Z Y, et al. Corrosion properties of friction-stir processed cast NiAl bronze [J]. Corros. Sci., 2010, 52: 1610
|
73 |
Ni D R, Xue P, Wang D, et al. Inhomogeneous microstructure and mechanical properties of friction stir processed NiAl bronze [J]. Mater. Sci. Eng., 2009, 524A: 119
|
74 |
Prevey P S, Hornbach D J, Jayaraman N. Controlled plasticity burnishing to improve the performance of friction stir processed Ni-Al bronze [J]. Mater. Sci. Forum, 2006, 539-543: 3807
|
75 |
Wu T, Zhu L, Li J, et al. Status and development of thermal spraying technology [J]. Heat Treat. Met. Abroad, 2005, 26(4): 2
|
|
吴涛, 朱流, 郦剑等. 热喷涂技术现状与发展 [J]. 国外金属热处理, 2005, 26(4): 2
|
76 |
Cheng Z X. Investigation on microstructure and properties of dual-scale WC-12Co coating deposited by HVOF [D]. Tianjin: Tianjin University, 2014: 1
|
|
程振雄. 超音速火焰喷涂制备双尺度结构WC-12Co涂层研究 [D]. 天津: 天津大学, 2014: 1
|
77 |
Park K S, Kim S. Corrosion and corrosion fatigue characteristics of cast NAB coated with NAB by HVOF thermal spray [J]. J. Electrochem. Soc., 2011, 158: C335
|
78 |
Wang S L, Cheng J C, Yi S H, et al. Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 146
|
79 |
Movahedi B. Fracture toughness and wear behavior of NiAl-based nanocomposite HVOF coatings [J]. Surf. Coat. Technol., 2013, 235: 212
|
80 |
Hawthorne H M, Arsenault B, Immarigeon J P, et al. Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings [J]. Wear, 1999, 255-229: 825
|
81 |
Sun B, Fukanuma H, Ohno N. Study on stainless steel 316L coatings sprayed by a novel high pressure HVOF [J]. Surf. Coat. Technol., 2014, 239: 58
|
82 |
Guo X P, Planche M P, Chen J F, et al. Relationships between in-flight particle characteristics and properties of HVOF sprayed WC-CoCr coatings [J]. J. Mater. Process. Technol., 2014, 214: 456
|
83 |
Shipway P H, Gupta K. The potential of WC-Co hardmetals and HVOF sprayed coatings to combat water-droplet erosion [J]. Wear, 2011, 271: 1418
|
84 |
Li Y. Laser cladding composite coating of aluminum bronze matrix on magnesium alloy surface [D]. Taiyuan: Taiyuan University of Technology, 2011
|
|
李岩. 镁合金表面激光熔覆铝青铜基复合涂层 [D]. 太原: 太原理工大学, 2011
|
85 |
Xiao G H, Cheng F Q, Qin P G. Progress in laser surface strengthening of copper alloys [J]. Mech. Eng., 2013, (12): 35
|
|
肖国华, 程方启, 秦鹏高. 激光表面强化铜合金技术进展研究 [J]. 机械工程师, 2013, (12): 35
|
86 |
Medeliene V, Matulionis E. Morphology and corrosion properties of electroplated Ni-Cr alloy coatings in salt solutions [J]. Prot. Met., 2002, 38: 238
|
87 |
Torre F D, van Swygenhoven H, Victoria M. Nanocrystalline electrodeposited Ni: Microstructure and tensile properties [J]. Acta Mater., 2002, 50: 3957
|
88 |
Hasan F, Iqbal J, Ridley N. Microstructure of as-cast aluminium bronze containing iron [J]. Mater. Sci. J., 1985, 1: 312
|
89 |
Yang F F, Kang H J, Guo E Y, et al. The role of nickel in mechanical performance and corrosion behaviour of nickel-aluminium bronze in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 139: 333
|
90 |
Meigh H J. Cast and wrought aluminum bronzes-properties, processes and structure [R]. London: Institute of Materials, 2000
|
91 |
Saud S N, Hamzah E, Abubakar T, et al. Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys [J]. J. Mater. Eng. Perform., 2014, 23: 3620
|
92 |
Anene F A, Nwankwo N E, Nwoke V U. Effect of dopant and heat treatment on the microstructure and mechanical properties of nickel-aluminum bronze [J]. Matell. Mater. Eng., 2019, 25: 147
|
93 |
Qin Z B, Luo Q, Zhang Q, et al. Improving corrosion resistance of nickel-aluminum bronzes by surface modification with chromium ion implantation [J]. Surf. Coat. Technol., 2018, 334: 402
|
94 |
Guo Z L, Tang W X, Zhang H L, et al. Development of a novel casting Cu alloy for seawater pumper and valves [J]. Spec. Cast. Nonferrous Alloys, 2005, 25: 62
|
|
郭泽亮, 汤文新, 张化龙等. 海水泵阀用新型铸造铜合金的研制 [J]. 特种铸造及有色合金, 2005, 25: 62
|
95 |
Ji L G. Effect of rare earth on properties of high manganese aluminum bronze [J]. Yunnan Metall., 1994, (7): 43
|
|
季龙官. 稀土对高锰铝青铜性能的影响 [J]. 云南冶金, 1994, (7): 43
|
96 |
Ye Y J. Talking propeller cavitation [J]. Dandong Mar., 2005, (1): 88
|
|
叶英俊. 浅谈螺旋桨的空泡 [J]. 丹东海工, 2005, (1): 88
|
97 |
Carl. The causes, impact and restraint methods of propeller cavitation [D]. Tianjin: Tianjin University, 2016
|
|
Carl. 螺旋桨空泡成因、影响和应对方法 [D]. 天津大学, 2016
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|