Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 638-646    DOI: 10.11902/1005.4537.2021.173
Current Issue | Archive | Adv Search |
Influence of Cr Content on Corrosion Resistance of Composite Ni/Ni-Cr/Ni-Cr-Al-Si Films on Cu
WEN Jiayuan1, SONG Guihong1(), WEI Xiaoyuan2, ZHAO Xin1, WU Yusheng1, DU Hao2(), HE Chunlin3
1.School of Material Science and Technology, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Corrosion Science and Technology, Guangzhou 510530, China
3.Liaoning Province Key Laboratory of Advanced Materials, Shenyang University, Shenyang 110044, China
Download:  HTML  PDF(13079KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to enhance the corrosion resistance of Cu alloy to meet the requirements for their application in marine engineering equipment and facilities, a gradient composite coatings Ni/Ni-Cr/Ni-Cr-Al-Si were prepared on Cu plate by step-wise processes, i.e. firstly electrodeposited Ni film and then magnetron sputtered Ni-Cr alloy films and Ni-Cr-Al-Si alloy films in sequence. The structure and corrosion characteristics of the Ni/Ni-Cr/Ni-Cr-Al-Si gradient composite coatings with different Cr contents were characterized by means of X-ray diffractometer and electrochemical impedance spectroscope (EIS). The results show that among others, the gradient composite coating (S2 sample) with Cr content of 43.05% has the highest corrosion resistance, namely the highest low frequency impedance, capacitance arc radius, maximum phase angle, charge transfer resistance Rf and corrosion potential. The higher the atomic ratio of Al/Cr in the deposited Ni-Cr-Al-Si films is, the better the corrosive resistance of the deposited composite coating is. The corrosion process of the deposited gradient composite coating is mainly pitting corrosion, and the interface of the clusters on the surface of the films is the center of pitting corrosion. The Ni/Ni-Cr/Ni-Cr-Al-Si gradient composite coating with appropriate Cr content has good corrosion resistance in seawater and thermal conductivity, thus it is suitable as a protective coating for heat exchangers made of Cu alloys used in seawater.

Key words:  Ni/Ni-Cr/Ni-Cr-Al-Si gradient composite film      corrosion resistance      Cr content      electrochemical impedance spectrum      anodic polarization curve     
Received:  19 July 2021     
ZTFLH:  TQ150.6  
Fund: National Natural Science Foundation of China(51772193);Liaoning Revitalization Talents Program(XLYC2008014)
Corresponding Authors:  SONG Guihong,DU Hao     E-mail:  songgh@sut.edu.cn;hdu@icost.ac.cn
About author:  DU Hao, E-mail: hdu@icost.ac.cn
SONG Guihong, E-mail: songgh@sut.edu.cn

Cite this article: 

WEN Jiayuan, SONG Guihong, WEI Xiaoyuan, ZHAO Xin, WU Yusheng, DU Hao, HE Chunlin. Influence of Cr Content on Corrosion Resistance of Composite Ni/Ni-Cr/Ni-Cr-Al-Si Films on Cu. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 638-646.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.173     OR     https://www.jcscp.org/EN/Y2022/V42/I4/638

SampleNumber of Cr particlesNiCrAlSi[Al]/[Cr]
S1040.2639.2414.725.270.3751
S2235.3543.0517.154.450.3983
S3433.3247.0515.454.180.3284
S4632.2149.6414.483.670.2917
Table 1  Composition of deposited Ni/Ni-Cr/Ni-Cr-Al-Si gradient composite films (atomic fraction / %)
Fig.1  SEM-EDS map scan of S2 sample: (a) SEM image, (b) EDS color elemental mapping; (c-f) Cr, Ni, Al and Si elemental mapping, respectively
Fig.2  XRD patterns of Ni/Ni-Cr/Ni-Cr-Al-Si gradient composite film with different Cr content (a), local XRD patterns of Ni/Ni-Cr/Ni-Cr-Al-Si composite film with different Cr content (diffraction angle is 43°-46°) (b) and relationship between lattice constant and Cr content (c)
Fig.3  Surface morphologies of Ni/Ni-Cr/Ni-Cr-Al-Si gradient composite film with 39.24%Cr (a), 43.05%Cr (b), 47.05%Cr (c), 49.64%Cr (d)
Fig.4  Cross-sectional morphologies of Ni/Ni-Cr/Ni-Cr-Al-Si gradient composite film with 39.24%Cr (a), 43.05%Cr (b), 47.05%Cr (c), 49.64%Cr (d)
Fig.5  AC impedance spectra of the gradient composite films (a) and relationship between the maxi-mum impedance value and the Cr content (b)
Fig.6  Nyquist (a) and Bode (b) plots and relationship between maximum phase angle and Cr content (c) of the gradient composite films
Fig.7  Equivalent circuit of the gradient composite films to simulate the corrosion reaction
SampleRsΩ·cm2Q1μF·cm-2ncRcΩ·cm2Q2μF·cm-2ntRfΩ·cm2
S16.9482.056×10-50.848710.54.769×10-50.86911.445×104
S26.4338.499×10-50.844866.933.359×10-50.92895.547×104
S34.9632.481×10-40.836628.086.782×10-311516
S45.6711.096×10-40.864926.645.491×10-31392.5
Table 2  EIS data corresponding equivalent circuit and standard parameters of the composite films
Fig.8  Anodic polarization curves of the composite films
Fig.9  Surface morphology after corrosion of the composite films with 39.24%Cr (a), 43.05%Cr (b, c), 47.05%Cr (d, e), 49.64%Cr (f)
1 Dong C L, Bai X Q, Yan X P, et al. Research status and advances on tribological study of materials under ocean environment [J]. Tribology, 2013, 33: 311
董从林, 白秀琴, 严新平 等. 海洋环境下的材料摩擦学研究进展与展望 [J]. 摩擦学学报, 2013, 33: 311
2 Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
林朝晖, 明南希, 何川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307
3 Li G Q, Li G F, Wang J Q, et al. Microbiologically influenced corrosion mechanism and protection of offshore pipelines [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 429
李光泉, 李广芳, 王俊强 等. 临海管道微生物腐蚀损伤机制与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 429
4 Ye Y W, Wang Y X, Ma X L, et al. Tribocorrosion behaviors of multilayer PVD DLC coated 304L stainless steel in seawater [J]. Diam. Relat. Mater., 2017, 79: 70
doi: 10.1016/j.diamond.2017.09.002
5 Liang G, Zhu S, Wang W Y, et al. Research status and development trend of aluminum alloy anticorrosion technology [J]. Mater. Rep., 2020, 34(Z2): 1429
梁广, 朱胜, 王文宇 等. 铝合金腐蚀防护技术研究现状及发展趋势 [J]. 材料导报, 2020, 34(Z2): 1429
6 Ren X Y. Study on the preparation and catalytic performance of corrosion-resistant composite metal materials [J]. World Nonferr. Met., 2019, (20): 191
任显赟. 耐腐蚀复合金属材料的制备与催化性能研究 [J]. 世界有色金属, 2019, (20): 191
7 Xia Q Q, Zhu T, Xu Y. Analysis of structural corrosion allowance requirement standards for naval ship [J]. Ship Standard. Eng., 2020, 53(5): 6
夏齐强, 朱韬, 徐忆. 舰船结构腐蚀余量要求标准分析 [J]. 船舶标准化工程师, 2020, 53(5): 6
8 Jiang Z, Zhang C H, Du J, et al. A pipeline was protected by impressed current cathodic protection and sacrificial anode external corrosion factors and control measures [J]. Total Corros. Control, 2021, 35(4): 105
蒋志, 张昌会, 杜涓 等. 某采用外加电流阴极保护与牺牲阳极联合保护管线外腐蚀因素及控制措施 [J]. 全面腐蚀控制, 2021, 35(4): 105
9 Yan H J. Study on preparation technology and properties of Ni-Cr-Al-Si-Y2O3-B alloy system [D]. Nanning: Guangxi University, 2018
闫海居. Ni-Cr-Al-Si-Y2O3-B合金体系的制备工艺及性能研究[D]. 南宁: 广西大学, 2018
10 Chen M F, Sun J S, You C, et al. Effect of chromium and silicon on microstructure and corrosion resistance of Ni-based superalloy [J]. J. Tianjin Inst. Technol., 2000, 16(1): 6
陈民芳, 孙家枢, 由臣 等. 铬、硅含量对镍基高温合金组织及耐蚀性的影响 [J]. 天津理工学院学报, 2000, 16(1): 6
11 Singh H, Kalsi S B S, Sidhu T S, et al. Microstructure of Ni-Cr-based coating for corrosive conditions [J]. J. Therm. Spray. Technnol., 2019, 28: 1420
12 Firouzi-Nerbin H, Nasirpouri F, Moslehifard E. Pulse electrodeposition and corrosion properties of nanocrystalline nickel-chromium alloy coatings on copper substrate [J]. J. Alloy. Compd., 2020, 822: 153712
doi: 10.1016/j.jallcom.2020.153712
13 Tseng Y T, Lin J C, Jang J S C, et al. Three-dimensional amorphous Ni-Cr alloy printing by electrochemical additive manufacturing [J]. ACS. Appl. Electron. Mater., 2020, 2: 3538
doi: 10.1021/acsaelm.0c00570
14 Demir M, Kanca E, Karahan İ H. Characterization of electrodeposited Ni-Cr/hBN composite coatings [J]. J. Alloy. Compd., 2020, 844: 155511
doi: 10.1016/j.jallcom.2020.155511
15 Hou W, Ding Y H, Li J Z, et al. Research on process of hard chromium electroplating with trivalent chromium sulfate electrolyte [J]. New Technol. New Process, 2013, (11): 89
侯蔚, 丁运虎, 李家柱 等. 硫酸盐体系三价铬硬铬电镀工艺研究 [J]. 新技术新工艺, 2013, (11): 89
16 Wang W Q, Li Y Q, Li X, et al. Microstructures and properties of Ni-Cr-B-Si alloy powders prepared by selective laser melting [J]. Mater. Rep., 2020, 34(2): 2077
王文权, 李雅倩, 李欣 等. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能 [J]. 材料导报, 2020, 34(2): 2077
17 Guo X H, Shen J, Liu S, et al. The corrosion behavior of Ni-Cr-Al alloys exposed to mixed oxidizing-carburizing atmospheres at 800 ℃ [J]. Corros. Sci., 2020, 176: 108877
doi: 10.1016/j.corsci.2020.108877
18 Li Y R, Lin Y, Tao B W. Electronic Materials [M]. Beijing: Tsinghua University Press, 2013
李言荣, 林媛, 陶伯万. 电子材料 [M]. 北京: 清华大学出版社, 2013
19 Xie M Y, Wang C, Zhang P Y, et al. Effects of composite strengthening on microstructure and mechanical property of K403 aluminized alloy [J]. China Surf. Eng., 2018, 31(1): 26
谢孟芸, 汪诚, 张佩宇 等. 复合强化对渗铝K403合金组织和力学性能的影响 [J]. 中国表面工程, 2018, 31(1): 26
20 Greeff A P, Louw C W, Swart H C. The oxidation of industrial FeCrMo steel [J]. Corros. Sci., 2000, 42: 1725
doi: 10.1016/S0010-938X(00)00026-3
21 Liu H L, Teng X Y, Wang Z F, et al. Oxidation resistance of Fe-Cr-Ni-N heat-resistance steel [J]. Foundry Technol., 2001, (6): 55
刘含莲, 滕新营, 王执福 等. Fe-Cr-Ni-N高温耐热钢的抗氧化性研究 [J]. 铸造技术, 2001, (6): 55
22 Cho B, Choi E, Chung S, et al. A novel Cr2O3 thin film on stainless steel with high sorption resistance [J]. Surf. Sci., 1999, 439: L799
doi: 10.1016/S0039-6028(99)00815-8
23 Song G H, Lou Z, Xiong G L, et al. Preparation, structure and performance of Ti/TiN multilayer film on surface of copper alloy [J]. J. Shenyang Univer. Technol., 2012, 34: 391
宋贵宏, 娄茁, 熊光连 等. 铜合金表面Ti/TiN多层膜的制备、结构及其性能 [J]. 沈阳工业大学学报, 2012, 34: 391
24 Yang H Y, Chen Q S, Zhang R Q, et al. Effect of deposition temperature on microstructures and properties of FeCrAl coating prepared by magnetron sputtering [J]. Nucl. Power Eng., 2020, 41(suppl.1) : 200
杨红艳, 陈青松, 张瑞谦 等. 沉积温度对磁控溅射制备FeCrAl涂层微观结构及性能的影响 [J]. 核动力工程, 2020, 41(): 200
25 Cao Z Q, Yu L, Zhang K. Effect of Al addition on high temperature oxidation behavior of Cu-Ni-Cr alloy [J]. Rare Met. Mater. Eng., 2013, 42: 2149
曹中秋, 于龙, 张轲. 添加Al对Cu-Ni-Cr合金高温氧化行为的影响 [J]. 稀有金属材料与工程, 2013, 42: 2149
26 Huang Y, Lu S Q, Zheng H Z. Effect of Al on high temperature oxidation resistance of Cr-20Nb alloy [J]. J. Aeronaut. Mater., 2009, 29(6): 8
黄毅, 鲁世强, 郑海忠. 合金元素Al对Cr-20Nb合金高温抗氧化性能的影响 [J]. 航空材料学报, 2009, 29(6): 8
27 Xian X B, Wang Q F, Liu K Z, et al. Corrosion behavior of the vacuum cathodic Arc, deposited TiN/Ti coatings [J]. Rare Met. Mater. Eng., 2005, 34: 1774
鲜晓斌, 王庆富, 刘柯钊 等. 阴极电弧离子沉积TiN/Ti镀层腐蚀特性 [J]. 稀有金属材料与工程, 2005, 34(11): 1774
28 Roach M, Parsell D, Gardner S, et al. Correlation of corrosion andsurface analyses for Ni-Cr alloys [J]. Crit. Rev. Biomed. Eng., 1998, (26): 391
29 Song G H, Jin T, Xiong Y, et al. Deposition of the Ti/TiN multilayer films on Cu filament [J]. Vacuum, 2011, 48(4): 61
宋贵宏, 金弢, 熊焰 等. Cu丝上沉积Ti/TiN多层膜的研究 [J]. 真空, 2011, 48(4): 61
[1] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[2] YU Shuaixian, WU Yajun, WU Haisheng, WU Liang, MA Yanlong, DENG Shengwei, SUN Lidong. Optimization of Titanate Modified Silane Coatings and Their Effect on Corrosion Resistance of 5056 Aluminum Foils[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[3] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[4] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[5] LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[6] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[7] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[8] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[9] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[10] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[11] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[12] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[13] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[14] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[15] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
No Suggested Reading articles found!