Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (2): 176-184    DOI: 10.11902/1005.4537.2019.007
Current Issue | Archive | Adv Search |
Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS
Ping XU(),Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG
National Demonstration Center for Experimental Water Environment Education, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
Download:  HTML  PDF(3981KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Extracellular polymeric substance (EPS) presents certain inhibitory effect on metal corrosion, which mainly composed of protein, polysaccharide. In the study here, Bovine serum albumin (BSA) and Dextran 40 were used to represent the protein and polysaccharide respectively, with which the carbon steel was coated by dip-coating method. Thereafter, the corrosion behavior of carbon steel without and with coatings of BSA and Dextrand 40 was studied via immersion test in an artificial corrosive solution of NaCl 58.5 mg/L+Na2SO4 213 mg/L+NaHCO3 4.2 mg/L. The corrosion rate, surface morphology, corrosion products, and electrochemical behavior of the carbon steel, as well as the changes in functional groups of the BSA and Dextran 40 before and after dip-coating on carbon steel are mainly concerned in the study. Results shown that the corrosion products formed on the steel coated with BSA and Dextran 40 contained the amounts of Fe3O4 up to 113.6% and 145.5% of that on the plain steel, correspondingly, the corrosion rate decreased by 17.7%, 24.0%, respectively. The equivalent circuit of the plain steel is R(QR) and the dip-coating ones could be fitted with R(Q(R(QR))). Infrared spectroscopy revealed that, after dip-coating on the steel surface, the relevant peaks of the —C=O—, —COO— of protein, and the —C—OH, —CH3, —CH2—, —COO— of polysaccharide weakened or even disappeared, which indicated that after dip-coating a protective film may form on the surface of carbon steel. The fact implies that the functional groups of BSA and Dextran 40 may take part in the corrosion process, and play a key role on the formation of protective film.

Key words:  protein      polysaccharide      carbon steel      corrosion      protective layer      EPS     
Received:  10 January 2019     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51578035);Fundamental Research Funds for Beijing Universities, Research Foundation of Beijing University of Civil Engineering and Architecture(00331615008);Research Foundation of Key Laboratory of Urban Stormwater Systemand Water Environment & BUCEA(PXM2014014210000057)
Corresponding Authors:  Ping XU     E-mail:  xuping@bucea.edu.cn

Cite this article: 

Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 176-184.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.007     OR     https://www.jcscp.org/EN/Y2019/V39/I2/176

Fig.1  Schematic diagram of experimental set-up
Fig.2  Corrosion rates of blank and dipped carbon steel in testing solution
Fig.3  SEM images (a~c) andcorresponding EDS results (d~f) of carbon steel smaples without dipping (a, d), and dipped with protein (b, e) and polysaccharide (c, f) after immersion for 16 d
Fig.4  XRD spectra of blank and dipped carbon steel samples after corrosion in testing solusion for 16 d
Fig.5  Nyquist plots of carbon steel electrode during immersion in water (a), protein (b) and polysaccharide (c) solutions
Fig.7  Equivalent circuit models for fitting EIS of carbon steel electrode during immersion in water (a) and in protein/polysaccharide solution (b)
ConditionRs / Ω·cm2Cb / μF·cm-2nbRb / Ω·cm2Cf / μF·cm-2nfRP / Ω·cm2n
Water-1 h4.67×102---------3.77×10-4---1.92×1037.15×10-1
Water-3 h4.54×102---------3.95×10-4---1.89×1037.72×10-1
Water-6 h4.24×102---------4.77×10-4---1.83×1038.09×10-1
Water-9 h4.12×102---------4.93×10-4---1.63×1038.19×10-1
Water-12 h4.39×102---------4.98×10-4---1.62×1037.56×10-1
Water-18 h5.17×102---------6.25×10-4---1.60×1037.18×10-1
Water-24 h5.27×102---------6.64×10-4---1.42×1037.90×10-1
Protein-1 h7.12×1023.24×10-88.39×10-13.08×1021.08×10-47.57×10-11.70×103---
Protein-3 h7.16×1023.78×10-88.26×10-14.17×1021.19×10-48.72×10-11.65×103---
Protein-6 h7.87×1023.81×10-89.11×10-14.29×1021.51×10-48.24×10-11.60×103---
Protein-9 h8.11×1024.06×10-89.02×10-14.72×1022.11×10-48.20×10-11.56×103---
Protein-12 h8.02×1024.30×10-89.00×10-15.35×1022.46×10-49.29×10-11.49×103---
Protein-18 h7.25×1024.46×10-89.23×10-15.35×1023.02×10-48.06×10-11.61×103---
Protein-24 h7.74×1024.96×10-89.13×10-16.23×1023.53×10-48.21×10-12.04×103---
Polysaccharide-1 h7.47×1023.36×10-89.34×10-15.25×1025.53×10-48.81×10-11.75×103---
Polysaccharide-3 h7.39×1023.45×10-88.32×10-15.31×1026.44×10-48.68×10-11.67×103---
Polysaccharide-6 h7.27×1023.53×10-87.18×10-15.50×1026.51×10-48.64×10-11.65×103---
Polysaccharide-9 h7.13×1023.66×10-88.58×10-15.63×1027.93×10-48.73×10-11.81×103---
Polysaccharide-12 h8.14×1023.69×10-88.14×10-15.87×1028.83×10-48.67×10-11.97×103---
Polysaccharide-18 h8.03×1024.10×10-89.73×10-15.97×1021.07×10-38.79×10-12.13×103---
Polysaccharide-24 h7.90×1024.70×10-89.72×10-16.08×1021.08×10-37.37×10-12.14×103---
Table 1  Fitting equivalent circuit parameters for carbon steel electrode
Fig.6  Impendance module (a, c, e) and phase angle (b, d, f) plots of carbon steel electrode during immersion in water (a, b),proteinsolution (c, d) and polysaccharide (e, f) solutions
Fig.8  FT-IR spectra of pure protein and polysaccharide powders, and corrosion products of carbon steel after immersion in protein (a) and polysaccharide (b) solutions for 24 h
Fig.9  Formation mechanism of “Chelates-corrosion products”protective layer: chelation of iron ions with protein/polysaccharide (a) and corrosion inhibition of protection layer (b)
[1] Xu P. Microbiological characteristic of recycling cooling water system makeup by municipal reclaimed water in a power plant [D]. Beijing: Beijing Jiaotong University, 2013
[1] 许萍. 市政再生水补水的电厂循环冷却水系统微生物特征及控制技术研究 [D]. 北京: 北京交通大学, 2013
[2] Liu H W, Ge T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
[3] Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
[4] Stadler R, Wei L, Fürbeth W, et al. Influence of bacterial exopolymers on cell adhesion of desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS) [J]. Mater. Corros., 2010, 61: 1008
[5] Dong Z H, Liu T, Liu H F. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion [J]. Biofouling, 2011, 27: 487
[6] Dong Y H, Guo N, Liu T, et al. Effect of extracellular polymeric substances isolated from Vibrio natriegens on corrosion of carbon steel in seawater [J]. Corros. Eng., Sci. Technol., 2016, 51: 455
[7] Finkenstadt V L, C?té G L, Willett J L. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J]. Biotechnol. Lett., 2011, 33: 1093
[8] Jin J T, Wu G X, Zhang Z H, et al. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater [J]. Bioresour. Technol., 2014, 165: 162
[9] Ignatova-Ivanova T, Ivanov R. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors [J]. Acta Sci. Nat., 2016, 3: 51
[10] Li F S, An M Z, Duan D X. Corrosion inhibition of stainless steel by a sulfate-reducing bacteria biofilm in seawater [J]. Int. J. Miner., Metall. Mater., 2012, 19: 717
[11] Flemming H C, Wingender J. The Biofilm Matrix [J]. Nat. Rev. Microbiol., 2010, 8: 623
[12] Beech I B, Zinkevich V, Tapper R, et al. Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry [J]. J. Microbiol. Meth., 1999, 36: 3
[13] Urbain V, Block J C, Manem J. Bioflocculation in activated slud-ge: An analytic approach [J]. Water Res., 1993, 27: 829
[14] Keiding K, Nielsen P H. Desorption of organic macromolecules from activated sludge: Effect of ionic composition [J]. Water Res., 1997, 31: 1665
[15] Zhang F, Pan J S, Claesson P M. Electrochemical and AFM studies of mussel adhesive protein (Mefp-1) as corrosion inhibitor for carbon steel [J]. Electrochim. Acta, 2011, 56: 1636
[16] Ghafari M D, Bahrami A, Rasooli I, et al. Bacterial exopolymeric inhibition of carbon steel corrosion [J]. Int. Biodeterior. Biodegrad., 2013, 80: 29
[17] Zhang H X, Wang D D, Wang F, et al. Corrosion inhibition of mild steel in hydrochloric acid solution by quaternary ammonium salt derivatives of corn stalk polysaccharide (QAPS) [J]. Desalination, 2015, 372: 57
[18] Finkenstadt V L, Bucur C B, C?té G L, et al. Bacterial exopolysaccharides for corrosion resistance on low carbon steel [J]. J. Appl. Polym. Sci., 2017, 134: 45032
[19] Mobin M, Rizvi M. Polysaccharide from Plantago as a green corrosion inhibitor for carbon steel in 1 M HCl solution [J]. Carbohydr. Polym., 2017, 160: 172
[20] Xu P, Si S, Zhang Y J, et al. Effect of extracellular polymeric substances (EPS) on anti-corrosion behavior of metals [J]. Corros. Prot., 2016, 37: 384
[20] 许萍, 司帅, 张雅君等. 微生物胞外聚合物 (EPS) 对金属耐蚀性的影响 [J]. 腐蚀与防护, 2016, 37: 384
[21] Guo X M, Li C G, Chen W, et al. GB/T 18175-2014 Determination of corrosion inhibition performance of water treatment agents-rotation specimen method [S]. Beijing: China Standard Press, 2014
[21] 郭喜民, 李成国, 陈伟等. GB/T 18175-2014水处理剂缓蚀性能的测定 旋转挂片法 [S]. 北京: 中国标准出版社, 2014
[22] Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochim. Acta, 2005, 50: 4655
[23] Stadler R, Fuerbeth W, Harneit, et al. First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates [J]. Electrochim. Acta, 2008, 54: 91
[24] Harimawan A, Ting Y P. Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion [J]. Colloids Surf., 2016, 146B: 459
[25] Wang J. Inhibition behavior of Lactobacillus reuteri extracellular polymeric substances on carbon steel corrosion [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2015
[25] 王婧. 罗伊氏乳杆菌胞外聚合物抑制碳钢腐蚀行为研究 [D]. 北京: 北京建筑大学, 2015
[26] Liu S N, Su W, Wei Z F, et al. Corrosion behavior analysis of carbon steel in natural and sterile seawater [J]. Equip. Environ. Eng., 2013, 10(4): 16
[26] 刘世念, 苏伟, 魏增福等. 碳钢在自然海水和灭菌海水中的腐蚀行为分析 [J]. 装备环境工程, 2013, 10(4): 16
[27] Hu J Y. Study on the corrosion mechanism and anticorrosion methods of carbon steel in RO product waste of seawater [D]. Wuhan: Wuhan University, 2013
[27] 胡家元. 碳钢在海水淡化一级反渗透产水中腐蚀机理及防腐方法研究 [D]. 武汉: 武汉大学, 2013
[28] Benali O, Abdelmoula M, Refait P, et al. Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: The transformation of green rust to ferrihydrite [J]. Geochim. Cosmochim. Acta, 2001, 65: 1715
[29] Liu H W, Xu D K, Dao A Q, et al. Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris [J]. Corros. Sci., 2015, 101: 84
[30] Zhang H Y, Tian Y M, Wan J M, et al. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water [J]. Appl. Surf. Sci., 2015, 357: 236
[31] Beech I B, Sunner J. Biocorrosion: Towards understanding interactions between biofilms and metals [J]. Curr. Opin. Biotechnol., 2004, 15: 181
[32] Moradi M, Song Z L, Tao X. Introducing a novel bacterium, Vibrio neocaledonicus sp., with the highest corrosion inhibition efficiency [J]. Electrochem. Commun., 2015, 51: 64
[33] Huo Y N, Liu S, Lu Z. Research on synthesis and behavior of Polyaspartic acid—A new type polymeric scale inhibitors [J]. Fine Chem., 2000, 17: 581
[33] 霍宇凝, 刘珊, 陆柱. 新型聚合物阻垢剂聚天冬氨酸的合成与性能 [J]. 精细化工, 2000, 17: 581
[34] Ye X Q, Peng T Y, Ji Y X, et al. Application progress of microorganism extracellular polymeric substances in environmental engineering [J]. J. Hangzhou Norm. Univ. (Nat. Sci. Ed.), 2016, 15: 387
[34] 叶小青, 彭亭瑜, 姬玉欣等. 微生物胞外聚合物在环境工程中的应用进展 [J]. 杭州师范大学学报 (自然科学版), 2016, 15: 387
[35] Scheerder J, Breur R, Slaghek T, et al. Exopolysaccharides (EPS) as anti-corrosive additives for coatings [J]. Prog. Org. Coat., 2012, 75: 224
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!