Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (2): 185-191    DOI: 10.11902/1005.4537.2018.052
Current Issue | Archive | Adv Search |
Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy
Li LIU,Sirong YU()
College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
Download:  HTML  PDF(9565KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

AM60 and AM60Gd1.0 magnesium alloys were prepared by zone solidification purifying method. Microstructures and phase compositions of the alloys were analyzed. The corrosion resistance of the alloys in 0.9% (mass fraction) NaCl solution and simulated body fluid were examined by hydrogen evolution test and electrochemical test. Results show that AM60 alloy composed of α-Mg and β-Mg17Al12, while Al2Gd was found for AM60Gd1.0. The corrosion rate of AM60Gd1.0 alloy was lower than that of AM60 alloy. The Ecorr of AM60Gd1.0 alloy was much positive than that of AM60 alloy due to the addition of 1.0%Gd. The Icorr of AM60Gd1.0 alloy was smaller than that of AM60 alloy. In NaCl solution, the EIS curves of AM60 and AM60Gd1.0 alloy all composed of a capacitive loop and an inductive loop. In SBF, the EIS curves of the alloys composed of two capacitive loops. Being soaked in NaCl solution for the same period of time, the radius of the EIS curve of AM60Gd1.0 alloy was larger than that of AM60 alloy.

Key words:  AM60 magnesium alloy      Gd      corrosion rate      polarization      electrochemical impedance     
Received:  20 April 2018     
ZTFLH:  TG178  
Fund: Supported by Fundamental Research Funds for the Central Universities(16CX06020A)
Corresponding Authors:  Sirong YU     E-mail:  SirongYu2014@126.com

Cite this article: 

Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 185-191.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.052     OR     https://www.jcscp.org/EN/Y2019/V39/I2/185

AlloyAlMnGdFeNiCuMg
AM605.870.3200.0020.0020.002Bal.
AM60Gd1.05.910.291.120.0010.0010.001Bal.
Table 1  Compositions of AM60 and AM60Gd1.0 alloys
Fig.1  Microstructures of AM60 (a) and AM60Gd1.0 (b) alloys
Fig.2  XRD patterns of AM60 and AM60Gd1.0 alloys
Fig.3  XRD patterns of corrosion products formed on AM60 and AM60Gd1.0 alloys after immersion in simulated body fluid for 7 d
Fig.4  Macro-appearances of AM60 and AM60Gd1.0 alloys after immersion in 0.9%NaCl solution for 7 d
Fig.5  Micro-appearances of AM60 (a) and AM60Gd1.0 (b) alloys after immersion in 0.9%NaCl solution for 7 d
Fig.6  Macro-appearances of AM60 and AM60Gd1.0 alloysafter immersion in simulated body fluid for 7 d
Fig.7  Micro-appearances of AM60 (a) and AM60 Gd1.0 (b) alloys after immersed in simulated body fluid for 7 d
SolutionAlloyEcorr / mVIcorr / mA·cm-2Epit / mVEpit-Ecorr / mV
0.9%NaClAM60-1336.093.02×10-2-1081.65254.44
AM60Gd1.0-1225.021.25×10-2-396.45828.57
Simulated body fluidAM60-1367.404.50×10-2-1047.24320.16
AM60Gd1.0-1271.641.92×10-2-959.75311.89
Table 2  Corrosion potentials, corrosion current densities and pitting corrosion potentials of AM60 and AM60Gd1.0 alloys in different solutions
Fig.8  Polarization curves of AM60 and AM60Gd1.0 alloys in 0.9%NaCl solution (a) and simulated body fluid (b)
Fig.9  EIS curves of AM60 (a) and AM60Gd1.0 (b) alloys in 0.9%NaCl solution
Fig.10  EIS curves of AM60 (a) and AM60Gd1.0 (b) alloys in simulated body fluid
[1] Qiao Z X, Shi Z M, Hort N, et al. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting [J]. Corros. Sci., 2012, 61: 185
[2] Hu Y, Rao L, Li Q P. Effects of Si on microstructures and corrosion properties of AM60 magnesium alloy [J]. Ordnance Mater. Sci. Eng., 2013, 36(4): 23
[2] 胡勇, 饶丽, 黎秋萍. Si对AM60镁合金组织和腐蚀性能的影响 [J]. 兵器材料科学与工程, 2013, 36(4): 23)
[3] Zhou X H, Wei Z L, Chen Q R, et al. Corrosion behavior of die-cast Mg-9Al magnesium alloy with RE addition [J]. Corros. Prot., 2006, 27: 487
[3] 周学华, 卫中领, 陈秋荣等. 含稀土耐蚀Mg-9Al铸造镁合金腐蚀行为研究 [J]. 腐蚀与防护, 2006, 27: 487
[4] Wu G H, Fan Y, Gao H T, et al. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D [J]. Mater. Sci. Eng., 2005, A408: 255
[5] Luo T J, Yang Y S, Li Y J, et al. Influence of rare earth Y on the corrosion behavior of as-cast AZ91 alloy [J]. Electrochim. Acta, 2009, 54: 6433
[6] Mert F, Blawert C, Kainer K U, et al. Influence of cerium additions on the corrosion behaviour of high pressure die cast AM50 alloy [J]. Corros. Sci., 2012, 65: 145
[7] Zhang Q, Li Q A, Wen J B, et al. Effects of Gd on corrosion resistance of magnesium alloy AZ81 [J]. Total Corros. Control, 2007, 21(6): 21
[7] 张清, 李全安, 文九巴等. Gd对镁合金AZ81耐腐蚀性能的影响 [J]. 全面腐蚀控制, 2007, 21(6): 21)
[8] Zhao M C, Liu M, Song G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 [J]. Corros. Sci., 2008, 50: 1939
[9] Bai L J, Zhang H, Yuan Y, et al. Influence of β-Mg17Al12 phase content on corrosion behavior of AZ9l magnesium alloy [J]. J. Xi’an Univ. Technol., 2011, 27: 31
[9] 白力静, 张华, 袁颖等. β-Mg17Al12相含量对AZ91镁合金腐蚀行为的影响 [J]. 西安理工大学学报, 2011, 27: 31
[10] Chen Z, Li Q A, Liu W J, et al. Application and development of gadolinium in heat resistant magnesium alloy [J]. Foundry, 2013, 62: 33
[10] 陈志, 李全安, 刘文健等. Gd在耐热镁合金中的应用及研究进展 [J]. 铸造, 2013, 62: 33
[11] Xu Y, Teng Y J, Zhang Y, et al. Investigation of improving corrosion resistance of magnesium alloys by permeating rare earths [J]. Chin. Rare Earths, 2004, 25(5): 13
[11] 许越, 滕玉洁, 张勇等. AZ91镁合金稀土表面改性的研究 [J]. 稀土, 2004, 25(5): 13)
[12] Wen S P, Xing Z B, Huang H, et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy [J]. Mater. Sci. Eng., 2009, A516: 42
[13] Arrabal R, Pardo A, Merino M C, et al. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.%NaCl solution [J]. Corros. Sci., 2012, 55: 301
[14] Song G L, Song S Z. Corrosion behaviour of pure magnesium in a simulated body fluid [J]. Acta Phys.-Chim. Sin., 2006, 22: 1222
[14] 宋光铃, 宋诗哲. 镁在人体模拟液中的腐蚀行为 [J]. 物理化学学报, 2006, 22: 1222
[15] He M F, Liu L, Wu Y T, et al. Corrosion properties of surface-modified AZ91D magnesium alloy [J]. Corros. Sci., 2008, 50: 3267
[16] Baril G, Pébère N. The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions [J]. Corros. Sci., 2001, 43: 471
[1] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[2] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[3] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[4] ZHANG Tianyi,LIU Wei,FAN Yueming,LI Shimin,DONG Baojun,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. Effect of Synergistic Action of Cu/Ni on Corrosion Resistance of Low Alloy Steel in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[5] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[6] WANG Biao,DU Nan,ZHANG Hao,WANG Shuaixing,ZHAO Qing. Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[9] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[10] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[11] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[12] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[13] Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[14] Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[15] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
No Suggested Reading articles found!