Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (2): 145-151    DOI: 10.11902/1005.4537.2018.103
Current Issue | Archive | Adv Search |
Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment
Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU()
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute(LSMRI), Qingdao 266237, China
Download:  HTML  PDF(8572KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The real sea water corrosion behavior of 304 stainless steel was studied at different depths such as 1200, 2000 and 3000 m below sea level in the South China Sea via a home-made series cage-like equipment, as well as SEM, EDS, EIS and XPS techniques. The results show that: the corrosion rate of 304 stainless steel in deep sea is relatively small. The corrosion rates for 0.5 a at depths of 1200, 2000, and 3000 m below sea level are 1.84, 2.07, and 3.11 μm/a, respectively, and the corrosion rate slightly increases with the depth. The influence degree of seawater environmental factors on the corrosion rate of 304 stainless steel decreases in a descending order as follows: pressure, oxygen content, electrical conductivity, temperature, pH. Crevice corrosion occurs locally on the surface of 304 stainless steel and the depth of the crevice corrosion increases with the increasing depth. The corrosion products for the tested 304 stainless steel consist mainly of Fe3O4 and NiO.

Key words:  deep sea environment      304 stainless steel      corrosion      real sea experiment     
Received:  13 July 2018     
ZTFLH:  TG172  
Corresponding Authors:  Likun XU     E-mail:  xulk@sunrui.net

Cite this article: 

Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 145-151.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.103     OR     https://www.jcscp.org/EN/Y2019/V39/I2/145

DepthmPressureMPaOxygen contentμmol/LTempreature℃ConductivitymS·cm-1pH
120012105.3183.52832.2528.747
200020117.7972.48831.7178.607
300030122.7762.34631.9868.5
Table 1  Oceanographic data of South China Sea
Fig.1  Corrosion rates of 304 stainless steel during immers-ion in the different depth locations of South China Sea
Fig.2  Macroscopic morphologies of 304 stainless steel with (a~c) and without (d~f) corrosion products formed after 0.5 a corrosion in the 1200 m (a, d), 2000 m (b, e) and 3000 m (c, f) depth locations of South China Sea
Fig.3  Crevice corrosion morphology (a) and crevice corro-sion depth (b) of 304 stainless steel after corrosion in the 2000 m depth location of South China Sea
Fig.4  Microscopic surface morphologies of 304 stainless steel after 0.5 a corrosion in the 1200 m (a), 2000 m (b) and 3000 m (c) depth locations of South China Sea
Fig.5  EIS of 304 stainless steel immersed for 0.5 a in diff-erent depth locations of South China Sea
Fig.6  Bode plots of 304 stainless steel immersed for 0.5 a in different depth locations of South China Sea
Fig.7  Fitting equivalent circuit diagrams: (a) R(C(R(CR))); (b) R(Q(R(QR)))
Depth / mRs / Ω·cm2C1 / F·cm2Qf1 / F·cm2nf1R1 / Ω·cm2C2 / F·cm2Qf2 / F·cm2nf2R2 / Ω·cm2
120033.101.598×10-4------536.502.181×10-4------4.079×104
200066.713.378×10-5------96.851.420×10-5------2.093×105
300037.19---7.26×10-50.68735.81---1.323×10-40.82591.34×105
Table 2  Fitting data of various circuit parameters
Fig.8  EDS results of corrosion products of 304 stainless steel exposed for 0.5 a in 1200 m (a), 2000 m (b) and 3000 m (c) deep sea
Depth/mNaMgSiPSClKCaVCrFeNi
120011.452.490.410.410.817.450.250.880.097.266.080.31
20009.911.470.370.310.866.340.161.28---9.485.650.27
30003.522.610.570.601.182.920.121.18---10.0211.080.72
Table 3  EDS results of corrosion products of 304 stainless steel
Fig.9  XPS spectra of O (a), Fe (b), Cr (c) and Ni (d) in corrosion products of 304 stainless steel exposed for 0.5 a at different depths in deep sea
Depth / mOFeCrNi
120033.8117.015.230.30
200031.7217.166.072.51
300032.6618.106.844.11
Energy level1s2p2p2p
Table 4  Contents of main elements in the corrosion products of 304 stainless steel
[1] He X C, Wang X, Yang H J, et al. Current status of deep sea oil and gas resources development in the South China Sea [A]. Proceedings of the 15th China Marine Engineering Symposium (I) [C]. Beijing, 2011: 525
[1] 何小超, 王娴, 杨海军等. 南海深水油气资源的开发现状 [A]. 第十五届中国海洋 (岸) 工程学术讨论会论文集 (上) [C]. 北京, 2011: 525)
[2] Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
[3] He X S, Lv P, He X, et al. New development of the research on corrosion of meatal structrues in deep-sea environment [J]. Environ. Eng., 2014, 32(S1): 1020
[3] 何筱姗, 吕平, 何鑫等. 关于深海环境下金属结构腐蚀的研究新进展 [J]. 环境工程, 2014, 32(S1): 1020)
[4] Huang Y Z, Dong L H, Liu B Y. Current status and development trend of study on corrosion of aluminum alloy in deep sea [J]. Mater. Prot., 2014, 47(1): 44
[4] 黄雨舟, 董丽华, 刘伯洋. 铝合金深海腐蚀的研究现状及发展趋势 [J]. 材料保护, 2014, 47(1): 44)
[5] Wei Y H, Lu J Z. Deep sea environment of carbon steel corrosion and protection [J]. Total Corros. Control, 2012, 26(3): 1
[5] 韦云汉, 芦金柱. 深海环境碳钢的腐蚀与防护 [J]. 全面腐蚀控制, 2012, 26(3): 1)
[6] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
[6] 周建龙, 李晓刚, 程学群等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47
[7] Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
[7] 曹攀, 周婷婷, 白秀琴等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
[8] He X S, Lv P, Chen K H, et al. New development about the research on corrosion and protection of metal structures in deep-sea environment [J]. Shanghai Coat., 2014, 52(4): 40
[8] 何筱姗, 吕平, 陈凯华等. 深海环境中金属腐蚀防护的研究新进展 [J]. 上海涂料, 2014, 52(4): 40)
[9] Sawant S S, Venkat K, Wagh A B. Corrosion of metals and alloys in the coastal and deep waters of the Arabian Sea and the bay of Bengal [J]. Indian J. Technol., 1993, 31: 862
[10] Venkatesan R, Venkatasamy M A, Bhaskaran T A, et al. Corrosion of ferrous alloys in deep sea environments [J]. Br. Corros. J., 2002, 37: 257
[11] Fan L, Ding K K, Guo W M, et al. Effect of hydrostatic pressure and pre-stress on corrosion behavior of a new type Ni-Cr-Mo-V high strength steel [J]. Acta Metall. Sin., 2016, 52: 679
[11] 范林, 丁康康, 郭为民等. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响 [J]. 金属学报, 2016, 52: 679
[12] Xu L K, Li W J, Chen G Z. Deep sea corrosion test technique [J]. Mar. Sci., 2005, 29(7): 1
[12] 许立坤, 李文军, 陈光章. 深海腐蚀试验技术 [J]. 海洋科学, 2005, 29(7): 1)
[13] Guo W M, Li W J, Chen G Z. Corrosion testing in the deep ocean [J]. Equip. Environ. Eng., 2006, 3(1): 10
[13] 郭为民, 李文军, 陈光章. 材料深海环境腐蚀试验 [J]. 装备环境工程, 2006, 3(1): 10)
[14] Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 82
[14] 侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 82)
[15] Guo W M, Sun M X, Hou J, et al. Highly efficient bunch-style device for corrosion testing in deep sea environment [J]. Equip. Environ. Eng., 2016, 13(5): 25
[15] 郭为民, 孙明先, 侯健等. 高效串型深海环境腐蚀试验技术 [J]. 装备环境工程, 2016, 13(5): 25)
[16] Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
[16] 郭为民, 孙明先, 邱日等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313
[17] Zheng J Q. Research of process of pitting corrosion of stainless steels in simulated deep-sea environment [D]. Zhenjiang: Jiangsu University of Science and Technology, 2011
[17] 郑家青. 模拟深海环境下不锈钢点蚀性能研究 [D]. 镇江: 江苏科技大学, 2011
[18] He K, Wang L. Corrosion behavior of 316NG stainless steel in high pure water environment [J]. Corros. Prot., 2016, 37: 631
[18] 何琨, 王理. 316NG不锈钢在高纯水环境中的腐蚀行为 [J]. 腐蚀与防护, 2016, 37: 631
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!