Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (2): 138-144    DOI: 10.11902/1005.4537.2018.166
Current Issue | Archive | Adv Search |
Relationship Between Selective Corrosion Behavior and Duplex Structure of 022Cr25Ni7Mo4N Duplex Stainless Steel
Han FENG(),Zhigang SONG,Xiaohan WU,Hui LI,Wenjie ZHENG,Yuliang ZHU
Institute for Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China
Download:  HTML  PDF(4589KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The relationship between the selective corrosion behavior and the microstructure of 022Cr25Ni7Mo4N duplex stainless steel was studied by means of electrochemical test, thermodynamic calculation, SEM, AES and XPS. The results show that the anodic polarization curve of test steel has obviously three stages, activation-passivation-transpassivation. In the conversion interval of activation to passivation, there exist two anode activation peak potentials, Eh=-236~-238 mV and El=-287~-294 mV, which may corresponds to the dissolution potential of γ-phase and α-phase respectively. 022Cr25Ni7 Mo4N steel has a higher El potential, a lower Eh potential and a smaller anode activation potential difference ΔE, which is related to the smaller difference of pitting resistance equivalent number (ΔPREN) between α-phase and γ-phase of the steel. The increase of Cr, Mo and N content can simultaneously increase the PREN value of α-phase and γ-phase of the test steel, and it can reach the balance of PREN between the two phases for the steel composed of 25.4%Cr, 4.8%Mo and 0.28%N (mass fraction). In such case, the Cr in the passive film is mainly as the chromia Cr2O3, and the transition zone width of the passivation film on α-phase is narrower than that on γ-phase.

Key words:  duplex stainless steel      duplex structure      selective corrosion      PREN value      passivation film     
Received:  13 November 2018     
ZTFLH:  TG142.2  
Fund: National Key R&D Program of China(2016YFB0300201)
Corresponding Authors:  Han FENG     E-mail:  fenghan@nercast.com

Cite this article: 

Han FENG,Zhigang SONG,Xiaohan WU,Hui LI,Wenjie ZHENG,Yuliang ZHU. Relationship Between Selective Corrosion Behavior and Duplex Structure of 022Cr25Ni7Mo4N Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 138-144.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.166     OR     https://www.jcscp.org/EN/Y2019/V39/I2/138

Fig.1  Polarization curves of two duplex stainless steels in 2 mol/L H2SO4+0.5 mol/L HCl solution (a) and partial enlarged details of circle area in Fig.1a (b)
SteelEcorr / mVEb / mVIp / μA·cm-2El / mVEh / mVΔE / mV
022Cr25Ni7Mo4N-sample 1-3309307.31-287-23651
022Cr25Ni7Mo4N-sample 2-32795022.34-294-23856
022Cr22Ni5Mo3N-sample 1-36394568.39-323-216107
022Cr22Ni5Mo3N-sample 2-368940111.70-332-212120
Table 1  Results of polarization curves of two duplex stainless steels
Fig.2  Original duplex structure of 022Cr25Ni7Mo4N steel (a) and surface morphologies of the sample after potentiostatic polarizations in 2 mol/L H2SO4+0.5 mol/L HCl solution at Eh potential (b) and El potential (c)
SteelTest positionCrNiMoFePRENΔPRENResidual phase
022Cr25Ni7Mo4NBase metal25.046.823.56Bal.36.8---
Sample 1 at Ehfor 48 h

26.31

27.22

26.78

5.68

5.67

5.28

4.55

4.37

4.26

59.95

59.87

60.66

41.3

41.6

40.8

7.1α
Sample 2 at Elfor 48 h23.128.693.4659.9534.5γ
23.048.962.9259.8732.7
23.368.353.5760.6635.1
022Cr22Ni5Mo3N[9]Base metal22.405.423.24Bal.33.1
Sample 1 at Ehfor 30 min24.227.755.8359.5643.511.4α
Sample 2 at Elfor 30 min20.488.073.5367.1632.1γ
Table 2  EDX results of residual phase of two duplex stainless steels after potentiostatic polarization
ElementContent / %PRENαPRENγ
MinMaxΔMinMaxΔMinMaxΔ
Cr24.026.02.041.4642.651.1940.2943.172.88
Mo3.05.02.039.5542.903.3539.2942.623.33
N0.240.320.0841.9142.510.6041.1143.212.10
Table 3  PRENα and PRENγ values of 022Cr25Ni7Mo4N steel with different contents of Cr, Mo and N at 1150 °C
Fig.3  Variations of ΔPREN values of 022Cr25Ni7Mo4N steel with the contents of Cr (a), Mo (b) and N (c) at 1150 °C
Fig.4  Microstructures of 00Cr25Ni7Mo4N duplex stainless steel after alternating voltage passivation in metallo-graphic mode (a) and Auger mode (b)
Fig.5  Auger electron spectroscopies of the passivation film (a) and the matrix (b) of 00Cr25Ni7Mo4N steel
Fig.6  Depth profiles of main elements in γ (a) and α (b) phases of 00Cr25Ni7Mo4N steel
SeriseCr2p3/2O1s
Metallic state574.3---
CrO2576.1529.9
Cr2O3576.7531.0
CrOOH577.0531.2
Cr(OH)3577.3531.2
Table 4  Standard photoelectron binding energies (eV) of some typical chromium containing compounds (sourced from PHI 5300 ESCA database)
[1] Zhang G X, Li S Q. Performance of duplex stainless steel and its application in petrochemical industry [J]. Petro-Chem. Equip. Technol., 2007, 28(4): 55
[1] 张国信, 李双权. 双相不锈钢的性能及其在石化行业的应用 [J]. 石油化工设备技术, 2007, 28(4): 55)
[2] Zhang Y N. Application analysis of 2507 duplex steel in urea equipment [J]. Proc. Equip. Piping, 2011, 48(6): 58
[2] 张亚宁. 2507双相不锈钢在尿素设备中的应用分析 [J]. 化工设备与管道, 2011, 48(6): 58)
[3] Wu J. Duplex Stainless Steel [M]. Beijing: Metallurgical Industry Press, 1999: 22
[3] 吴玖. 双相不锈钢 [M]. 北京: 冶金工业出版社, 1999: 22)
[4] Wang R G, Min G Q, Zheng W L. Selective corrosion during stress corrosion cracking of 00Cr18Ni5Mo3Si duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 47
[4] 王荣光, 闵国全, 郑文龙. 双相不锈钢在应力腐蚀开裂过程中的选择性腐蚀 [J]. 中国腐蚀与防护学报, 1998, 18: 47
[5] Gao J, Jiang Y M, Deng B, et al. Investigation of selective corrosion resistance of aged lean duplex stainless steel 2101 by non-destructive electrochemical techniques [J]. Electrochim. Acta, 2009, 54: 5830
[6] Lu X, Ha S N, Ren S Z. Failure analysis on SAF2205 duplex stainless heat exchange pipe [J]. Heat Treat., 2013, 28(4): 74
[6] 陆昕, 哈胜男, 任颂赞. SAF2205双相不锈钢换热管腐蚀失效分析 [J]. 热处理, 2013, 28(4): 74)
[7] Symniotis E. Galvanic effects on the active dissolution of duplex stainless steels [J]. Corrosion, 1990, 46: 2
[8] Fu Y, Lin C J, Luo Y X, et al. A study on the selective dissolution behavior of duplex stainless steel in systems containing nitric acid [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 272
[8] 付燕, 林昌健, 罗亦旋等. 双相不锈钢在含硝酸体系中的优选腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2004, 24: 272
[9] Tsai W T, Tsai K M, Lin C J, et al. Selective corrosion in duplex stainless steel [J]. Electrochemistry, 2003, 9(2): 170
[10] Lo I H, Fu Y, Lin C J, et al. Effect of electrolyte composition on the active-to-passive transition behavior of 2205 duplex stainless steel in H2SO4/HCl solutions [J]. Corros. Sci., 2006, 48: 696
[11] Leygraf C, Pan J, Femenia M. Microscopic corrosion studies of duplex stainless steels [J]. Acta. Metall. Sin.(Engl. Lett.), 2004, 17(5): 625
[12] Guo Q S, Zhao J B, Cheng X Q, et al. Galvanic effect between ferrite and austenite in 2205 duplex stainless steel [J]. Corros. Prot., 2015, 36: 1119
[12] 郭秋实, 赵晋斌, 程学群等. 2205双相不锈钢奥氏体铁素体两相间的电偶作用 [J]. 腐蚀与防护, 2015, 36: 1119
[13] Tsai W T, Chen J R. Galvanic corrosion between the constituent phases in duplex stainless steel [J]. Corros. Sci., 2007, 49: 3659
[14] Femenia M, Pan J, Laygraf C, et al. In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunnelling microscopy [J]. Corros. Sci., 2001, 43: 1939
[15] Li H. Investigation on the microstructure evolution and corrosion behavior of duplex stainless steel [D]. Xi'an: Xi'an University of Architecture and Technology, 2015
[15] 李惠. 双相不锈钢组织变化及腐蚀行为的研究 [D]. 西安: 西安建筑科技大学, 2015
[16] Li S J, Song Z G, Zheng W J, et al. Influence of N on microstructure, mechanical property and pitting corrosion resistance of 00Cr25Ni7Mo3N [J]. Mater. Rev., 2011, 25(S1): 520
[16] 李树健, 宋志刚, 郑文杰等. N对双相不锈钢00Cr25Ni7Mo3N组织、力学性能和耐点蚀性能的影响研究 [J]. 材料导报, 2011, 25(S1): 520)
[17] Zhang J X, Chen J, Cheng S S, et al. Growth mechanism of color passive film formed on stainless steel 304 by using A.V. passivation [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 167
[17] 张俊喜, 陈健, 程胜松等. 不锈钢载波钝化着色膜的形成机理研究 [J]. 中国腐蚀与防护学报, 1999, 19: 167
[18] Zhang T, He H, Zhao C Z. Carrier passivation treatment for duplex stainless steel [P]. China Pat, CN200810064147.1, 2008
[18] 张涛, 何欢, 赵成志. 双相不锈钢的载波钝化处理方法 [P]. 中国专利, CN200810064147.1, 2008
[19] Ramírez-Salgado J, Domínguez-Aguilar M A, Castro-Domínguez B, et al. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy [J]. Mater. Charact., 2013, 86: 250
[20] Wu Z Z. Research on hot treatment procedure and hot plasticity of super duplex stainless steel 00Cr25Ni7Mo4N [D]. Kunming: Kunming University of Science and Technology, 2006
[20] 吴忠忠. 超级双相不锈钢00Cr25Ni7Mo4N热处理工艺和热塑性研究 [D]. 昆明: 昆明理工大学, 2006
[21] Guo L Q, Li M, Shi X L, et al. Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques [J]. Corros. Sci., 2011, 53: 3733
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[4] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[5] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[6] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[7] Xuguang PANG, Runqing LIU, Wentao WANG, Yanhua SHI, Fei LI, Ping LIANG. Effect of Aging Temperature on Microstructure and Corrosion Resistance of S32750 Super Duplex Stainless Steel in Hydrofluoric Acid[J]. 中国腐蚀与防护学报, 2017, 37(6): 519-525.
[8] Han YAN, Qing ZHAO, Nan DU, Yanqing HU, Liqiang WANG, Shuaixing WANG. Formation Process and Corrosion Resistance of Trivalent Chromium Passivation Film on Zn-plated Q235 Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[9] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[10] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[11] Zhaohui SUN,Moradi Masoumeh,Lijing YANG,Bagheri Robabeh,Zhenlun SONG,Yanxia CHEN. Effect of Bacillus Vietnamensis as an Iron Oxidizing Bacterium on Corrosion of 2507 Duplex Stainless Steel in Sea Water[J]. 中国腐蚀与防护学报, 2016, 36(6): 659-664.
[12] Xiangnan MENG,Xu CHEN,Ming WU,Yang ZHAO,Yuwen FAN. Effect of Hydrostatic Pressure on Electrochemical Behavior of X100 Steel in NaHCO3+NaCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.
[13] HE Jin, YAN Minsheng, YANG Lijing, Masoumeh Moradi, SONG Zhenlun, JIANG Yehua. Electrochemical Corrosion and Critical Pitting Temperature of S32750 Super Duplex Stainless Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(2): 106-112.
[14] WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong. Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria[J]. 中国腐蚀与防护学报, 2014, 34(6): 558-565.
[15] ZHOU Xin, CHEN Ren, YANG Huaiyu, WANG Fuhui. Effect of Pentaerythritol Glycoside on Performance of Passive Film Formed on Steel Rebar in Saturated Ca(OH)2 Solution Containing 3.5%NaCl[J]. 中国腐蚀与防护学报, 2014, 34(2): 125-130.
No Suggested Reading articles found!