Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (5): 428-434    DOI: 10.11902/1005.4537.2016.218
Current Issue | Archive | Adv Search |
Synthesis and Corrosion Performance of Composites of Polyaniline/Modified Graphite
Qizhan WAN,Ningning CHEN,Peipei YANG,Lian ZHONG(),Yanhua WANG,Jia WANG
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdaog 266100, China
Download:  HTML  PDF(841KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polyaniline (PANi) was in situ deposited on the surface of modified graphite (MGE) via different electrochemical methods to prepare composites of PANi/MGE. Their morphology and microstructure were examined by scanning electron microscopy (SEM) and the Fourier transform infrared spectroscopy (FT-IR). While their anticorrosion properties were assessed by corrosion potential measurement and electrochemical impedance spectrometry. Experimental results showed that MGE as a support material can provide sufficient reaction sites for the deposition of aniline to form the film-like composites of PANI/MGE. There exists strong interaction at the interface of PANI and MGE. Test results of anticorrosion performance illustrated that among others, the composite of PANI/MGE prepared by polymerization with constant current step technique showed the best corrosion resistance and the highest open circuit potential.

Key words:  Polyaniline      modified graphite      2Cr13ss      corrosion     
Received:  18 November 2016     
Fund: Supported by National Natural Science Foundation of China (51131005) and Shandong Provincial Natural Science Foundation of China (BS2012HZ021)

Cite this article: 

Qizhan WAN,Ningning CHEN,Peipei YANG,Lian ZHONG,Yanhua WANG,Jia WANG. Synthesis and Corrosion Performance of Composites of Polyaniline/Modified Graphite. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 428-434.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.218     OR     https://www.jcscp.org/EN/Y2017/V37/I5/428

Fig.1  SEM images of MGE (a), PANI/MGE composites prepared by galvanostatic method (b), constant current stepmethod (c), PANI/MGE made by CV method (d) and self-polymerization method (e) and PANI (f)
Fig.2  FT-IR spectra of MGE (a) and as-polymerized PANI/MGE composites (b) (line 1: PANi/MGE made by Galvanostatic method, line 2: PANi/MGE made by constant current step method, line 3: PANi/MGE made by CV method, line 4: PANi/MGE made by Self-polymerization method, line 5: MGE)
Fig.3  OCP curves (a) and Nyquist plots (b) of 2Cr13 stainless steel coated with MEG and as-polymerized PANI/MGE composites, the magnified view of the square area in Fig.3b (c)
Fig.4  Equivalent circuit for the corrosion of 2Cr13 stainless steel coated with PANI/MGE polymerized by recurrent galvanic pulses method in 1 molL-1 H2SO4 solution
Fig.5  Electrochemical impedance spectroscopies and corresponding fitting results of 2Cr13 stainless steel coated with PANI/MGE coating 2 (a) and MGE coating (b) after immersion in 1 molL-1 H2SO4 solution for different time
Immersion time / d Rs / Ωcm2 Q n Rc / Ωcm2 Cs / μF Rct / Ωcm2
1 3.4540 1.47×10-5 0.9147 5433 3.756×10-3 4675
3 0.8257 7.73×10-5 0.9334 5940 1.561×10-3 7784
10 12.7900 7.95×10-5 0.9222 6600 1.39×10-3 9015
15 1.6030 7.76×10-5 0.928 6853 1.461×10-3 10200
20 1.2130 8.16×10-5 0.9275 6849 1.335×10-3 9917
25 1.2130 7.75×10-5 0.9297 7709 1.314×10-3 9567
30 2.3450 7.77×10-5 0.9296 6899 1.362×10-3 9318
35 0.6940 1.21×10-5 0.9192 5802 1.497×10-3 9463
Table 1  Fitting values of electrical apparatus elements in equivalent circuit for the corrosion of 2Cr13 stainless steel coated with PANI/MGE polymerized by recurrent galvanic pulses method in 1 molL-1 H2SO4 solution
Immersion time/ d Rs / Ωcm2 Q n Rc / Ωcm2 Cs / μF Rct / Ωcm2
1 1.0930 1.47×10-4 0.9268 1426 0.0125 1764
3 1.5520 1.17×10-4 0.9048 1548 1.25×10-3 4348
10 0.8259 7.41×10-5 0.9351 1736 1.55×10-3 7239
15 0.7381 8.08×10-5 0.9419 1555 9.554×10-3 5321
20 0.8967 7.85×10-5 0.9448 1491 9.18×10-3 5236
25 0.8259 1.15×10-5 0.9025 1795 1.017×10-2 5477
30 1.6030 7.42×10-5 0.9300 1604 1.439×10-3 5278
35 1.2130 7.75×10-5 0.9297 1709 1.314×10-3 5325
Table 2  Values of electrical apparatus elements in equivalent circuit for the corrosion of MGE coated 2Cr13 stainless steel in 1 molL-1 H2SO4 solution
[1] Xiao R J, Xiao G Q, Huang B, et al.Corrosion failure cause analysis and evaluation of corrosion inhibitors of Ma Huining oil pipeline[J]. Eng. Fail. Anal., 2016, 68: 113
[2] DeBerry D W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating[J]. J. Electrochem. Soc., 1985, 132: 1022
[3] Syed A A, Dinesan M K.Review: Polyaniline—a novel polymeric material[J]. Talanta, 1991, 38: 815
[4] Kang E T, Neoh K G, Tan K L.Polyaniline: A polymer with many interesting intrinsic redox states[J]. Prog. Polym. Sci., 1998, 23: 277
[5] Novák P, Müller K, Santhanam K S V, et al. Electrochemically active polymers for rechargeable batteries[J]. Chem. Rev., 1997, 97: 207
[6] Diaz A F, Logan J A.Electroactive polyaniline films[J]. J. Electroanal. Chem. Interf. Electrochem., 1980, 111: 111
[7] Lu C, Wang H R, Qu J E, et al.Application progress of carbon materials in metal corrosion protection[J]. Corros. Sci. Prot. Techol., 2014, 26: 254
[7] (路晨, 王海人, 屈钧娥等. 碳材料在金属防腐蚀中的应用研究进展[J]. 腐蚀科学与防护技术, 2014, 26: 254)
[8] Zhang F, Liu J J, Li X Y, et al.Application of graphite in anticorrosion paint[J]. Mater. Prot., 2007, 40(5): 27
[8] (张锋, 刘景军, 李效玉等. 石墨在防腐蚀涂料中使用的研究[J]. 材料保护, 2007, 40(5): 27)
[9] Gong Y N, Yu L J, Pan C X.Graphene and its applications in metal corrosion resistance: A review[J]. Chin. J. Ship Res., 2016, 11(1): 80
[9] (龚佑宁, 于连江, 潘春旭. 石墨烯及其在金属防腐中应用的研究进展[J]. 中国舰船研究, 2016, 11(1): 80)
[10] Gu L, Ding J H, Yu H B.Research in graphene-based anticorrosion coatings[J]. Prog. Chem., 2016, 28: 737
[10] (顾林, 丁纪恒, 余海斌. 石墨烯用于金属腐蚀防护的研究[J]. 化学进展, 2016, 28: 737)
[11] Deyab M A.Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell[J]. J. Power Sources, 2014, 268: 50
[12] Kumar A M, Gasem Z M.Effect of functionalization of carbon nanotubes on mechanical and electrochemical behavior of polyaniline nanocomposite coatings[J]. Surface Coat. Technol., 2015, 276: 416
[13] Mahato N, Cho M H.Graphene integrated polyaniline nanostructured composite coating for protecting steels from corrosion: Synthesis, characterization, and protection mechanism of the coating material in acidic environment[J]. Construct. Build. Mater., 2016, 115: 618
[14] Jafari Y, Ghoreishi S M, Shabani-Nooshabadi M.Polyaniline/Graphene nanocomposite coatings on copper: electropolymerization, characterization, and evaluation of corrosion protection performance[J]. Synth. Met., 2016, 217: 220
[15] Wang Huihui.Preparation and properties of Polyaniline/ carbon nanotube composite electroconductive and anticorrosive coating [D]. Tianjin University, 2013
[15] (王慧慧. 聚苯胺/碳纳米管复合导电防腐涂层的制备与性能研究 [D]. 天津大学, 2013)
[16] Kumar A M, Gasem Z M.In situ electrochemical synthesis of polyaniline/f-MWCNT nanocomposite coatings on mild steel for corrosion protection in 3.5%NaCl solution[J]. Prog. Org. Coat., 2015,78: 387
[17] Zhang L H, Li Y S, Wang D.Study on preparation and anti-corrosion properties of Polyaniline/Graphene waterborne coatings[J]. Proc. CSEE, 2015, 35(Suppl.): 170
[17] (张兰河, 李尧松, 王冬等. 聚苯胺/石墨烯水性涂料的制备及其防腐性能研究[J]. 中国电机工程学报, 2015, 35(增刊): 170)
[18] Chang C H, Huang T C, Peng C W, et al.Novel anticorrosion coatings prepared from polyaniline/graphene composites[J]. Carbon, 2012, 50: 5044
[19] Sun W, Wang L D, Wu T T, et al.Synthesis of low-electrical-conductivity graphene/pernigraniline composites and their application in corrosion protection[J]. Carbon, 2014, 79: 605
[20] Fan X Z, Xu H B, Lu Y H, et al.Electrochemical modification and its effect on the pseudocapacitive properties of a graphite electrode[J]. New Carbon Mater., 2014, 29: 508
[20] (范新庄, 徐海波, 芦永红等. 石墨电极电化学活化工艺与准电容特性[J]. 新型炭材料, 2014, 29: 508)
[21] Fan X Z, Gao H, Zhong L, et al.Investigation of the capacitive performance of polyaniline/modified graphite composite electrodes[J]. RSC Adv., 2015, 5: 3743
[22] Wang H L, Hao Q L, Yang X J, et al.Effect of graphene oxide on the properties of its composite with polyaniline[J]. ACS Appl. Mater. Interfaces, 2010, 2: 821
[23] Chen F, Liu P, Zhao Q Q.Well-defined graphene/polyaniline flake composites for high performance supercapacitors[J]. Electrochim. Acta, 2012, 76: 62
[24] Li X L, Zhong Q N, Zhang X L, et al.In situ polymerization of polyaniline on the surface of graphene oxide for high electrochemical capacitance[J]. Thin Solid Films, 2015, 584: 348
[25] Zhang Q H, Wang X H, Jing X B.Synthesis of polyaniline and its spectra properties[J]. Chem. World, 2001, 42: 242
[25] (张清华, 王献红, 景遐斌. 聚苯胺的合成及其光谱特性[J]. 化学世界, 2001, 42: 242)
[26] Zhang Y, Wang G J, Pan M.Fast electropolymerization of polyaniline nanofibers on carbon paper[J]. Chem. J. Chin. Univ., 2014, 35: 2234
[26] (张悦, 汪广进, 潘牧. 基于碳纸电极电化学快速合成聚苯胺纳米纤维[J]. 高等学校化学学报, 2014, 35: 2234)
[27] Jin X X, Zhong L, Wan Q Z, et al.Preparation and capacitive property of polyaniline/modified graphite electrode[J]. New Chem. Mater., 2017, 45(6): 103
[27] (金晓晓, 钟莲, 万起展等. 聚苯胺/改性石墨电极的制备及电容性能研究[J]. 化工新型材料, 2017, 45(6): 103)
[28] Zhong L, Hu J, Zhu H, et al.A mechanism of corrosion protection of polyaniline on 2Cr13 stainless steel in acidic solution[J]. J. Wuhan Univ.(Nat. Sci. Ed.), 2006, 52: 154
[28] (钟莲, 胡捷, 朱华等. 聚苯胺对2Cr13不锈钢无氧钝化的机理探讨[J]. 武汉大学学报(理学版), 2006, 52: 154)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!