Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 631-636    DOI: 10.11902/1005.4537.2016.089
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of Incoloy825 Alloy in 3.5%NaCl Solution at Different Temperatures
Min ZHU1(),Yongfeng YUAN1,Jun LIU2,Lun NIE3,Jian ZHOU1
1. School of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Ninth Oil Production Plant, Daqing Oil Field Co., Ltd, Daqing 163853, China
3. Zhejiang Meili High Technology Co., Ltd, Xinchang 312500, China
Download:  HTML  PDF(1054KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Incoloy825 alloy in 3.5%NaCl solution was studied in a temperature range 30~60 ℃ by polarization curve measurement, electrochemical impedance spectroscopy (EIS) and immersion test. The results show that the corrosion degree of Incoloy825 alloy increases with the increase of solution temperature, meanwhile, the size and density of corrosion pits increase. Moreover, the corrosion form is changed from general corrosion to localized pitting corrosion. The corrosion rate of the alloy increases with the increased temperature, which may be due to the synthetically effect of the two opposite factors i.e. the block effect with reducing oxygen and the stimulation effect with enhancing ion activity on the electrode process. Whilst the activity of chloride ion may play an important role in the acceleration of the corrosion process.

Key words:  Incoloy825 alloy      temperature      NaCl solution      corrosion behavior     

Cite this article: 

Min ZHU,Yongfeng YUAN,Jun LIU,Lun NIE,Jian ZHOU. Corrosion Behavior of Incoloy825 Alloy in 3.5%NaCl Solution at Different Temperatures. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 631-636.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.089     OR     https://www.jcscp.org/EN/Y2016/V36/I6/631

Fig.1  Metallograph of Incoloy825 alloy
Fig.2  Corrosion rates of Incoloy825 alloy in 3.5%NaClsolution at different temperatures
Fig.3  Corrosion morphologies of Incoloy825 alloy after immersion in 3.5%NaCl solution at 30 ℃ (a),40 ℃ (b), 50 ℃ (c) and 60 ℃ (d) for 30 d
Fig.4  Surface morphologies of Incoloy825 alloy at 30 ℃ (a), 40 ℃ (b), 50 ℃ (c) and 60 ℃ (d) for 30 dafter removal of the corrosion product
Content C O Al Si Cl Ti Cr Mn Fe Ni Mo
Mass fraction / % 47.87 12.86 0.17 0.38 0.63 0.41 9.53 0.53 11.48 14.24 1.91
Atomic fraction / % 72.52 14.62 0.11 0.25 0.32 0.16 3.33 0.18 3.74 4.41 0.36
Table 1  Chemical composition of black granular corrosion products
Fig.5  Polarization curves of Incoloy825 alloy under different solution temperature
Temperature / ℃ Ecorr / mV (vs SCE) Icorr / μAcm-2
30 -243 0.92
40 -359 4.10
50 -404 4.90
60 -565 8.60
Table 2  Corrosion potential and corrosion current density of Incoloy825 alloy at different temperatures in 3.5%NaCl solution
Fig.6  Nyquist plot (a), Bode plot of phase angle (b) and Bode plot of |Z | (c) of incoloy 825 alloy under different solution temperatures
Fig.7  Corresponding equivalent circuit
Fig.8  Curve of charge transfer resistance Rt as temperatureincreased
[1] Rebak R B, Crook P.Nickel alloys for corrosive environments[J]. Adv. Mater. Process., 2000, 157(2): 37
[2] Yang R C.Characteristics and research trends of high performance Ni-base corrosion resistant alloys[J]. Mater. Rev., 2001, 15(11): 21
[2] (杨瑞成. 高性能镍基耐蚀合金的特性与研究动向[J]. 材料导报, 2001, 15(11): 21)
[3] Wang C, Ju S H, Xun S L, et al.Progress in research on nickel-based corrosion resistant alloys[J]. Mater. Rev., 2009, 23(2): 71
[3] (王成, 巨少华, 荀淑玲等. 镍基耐蚀合金研究进展[J]. 材料导报, 2009, 23(2): 71)
[4] Gao W J.Study on the corrosion resistance of 600, 800H, 625, 825 and 840 nickel- based alloy [D]. Shanghai: Fudan University, 2013
[4] (高文娇. 镍基合金600、800H、625、825及840腐蚀性能研究 [D].上海: 复旦大学, 2013)
[5] Tan H, Jiang Y M, Deng B, et al.Evaluation of aged Incoloy 800 alloy sensitization to intergranular corrosion by means of double loop electrochemical methods and image analysis[J]. Nucl. Eng. Des., 2011, 241(5): 1421
[6] Li J, Yang J F, Sun B B, et al.Study of stress corrosion in environment of high temperature and pressure H2S/CO2 on 825 alloy[J]. Hot Work. Technol., 2014, 43(22): 90
[6] (李杰, 杨俊峰, 孙兵兵等. 825合金在高温高压H2S/CO2环境中的应力腐蚀研究[J]. 热加工工艺, 2014, 43(22): 90)
[7] Xu F L, Duan J Z, Lin C G, et al.Influence of marine aerobic biofilms on corrosion of 316L stainless steel[J]. J. Iron Steel Res. Int., 2015, 22(8): 715
[8] Wang J, Shang X C, Lu M X, et al.Pitting nucleation of 316L stainless steel in different environments[J]. J. Mater. Eng., 2015, 43(9):12
[8] (王晶, 尚新春, 路民旭等. 316L不锈钢在不同环境中点蚀形核研究[J]. 材料工程, 2015, 43(9): 12)
[9] Zakeri M, Nakhaie D, Naghizadeh M, et al.The effect of dichromate ion on the pitting corrosion of AISI 316 stainless steel. Part I: Critical pitting temperature[J]. Corros. Sci., 2015, 93: 234
[10] Sun Q Q, Zhou W H, Xie Y H, et al.Effect of trace chloride and temperature on electrochemical corrosion behavior of 7150-T76 Al alloy[J]. J. Chin. Soc. Corros. Prot., 2016, 36(2): 121
[10] (孙擎擎,周文辉, 谢跃煌等. 微量Cl-和温度对7150-T76铝合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2):121)
[11] Zhang Y C, Ju X H, Pang X L, et al.Effect of O2 concentration on corrosion rate of steels in supercritical CO2[J]. J. Chin. Soc. Corros. Prot., 2015, 35(3): 220
[11] (张玉成, 鞠新华, 庞晓露等. O2浓度对钢在超临界CO2中腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 220)
[12] Zhu M, Du C W, Li X G, et al.Corrosion behavior of pure copper and copper-clad steels in soil at Dagang district[J]. J. Chin. Soc. Corros. Prot., 2013, 33(6): 496
[12] (朱敏, 杜翠薇, 李晓刚等. 纯Cu和铜包钢在大港土壤环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 496)
[13] Chen C F, Lu M X, Zhao G X, et al.Behavior of CO2 pitting corrosion of N80 steel[J]. J. Chin. Soc. Corros. Prot., 2003, 23(1): 21
[13] (陈长风, 路民旭, 赵国仙等. N80油管钢CO2腐蚀点蚀行为[J]. 中国腐蚀与防护学报, 2003, 23(1): 21)
[14] Feng Y, He D L, Gong D S, et al.Study on corrosion resistance of 825 alloy made in China[J]. J. Chin. Soc. Corros. Prot., 2013, 33(2): 164
[14] (冯勇, 何德良, 龚德胜等. 国产825合金的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2013, 33(2): 164)
[15] Liu S, Zhao X, Chen C W, et al.Corrosion behavior of pipeline steel X65 in oilfield[J]. J. Chin. Soc. Corros. Prot., 2015, 35(5): 393
[15] (刘栓, 赵霞, 陈长伟等. 油田输油管线钢X65的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 393)
[16] Yin Z F, Zhao W Z, Lai W Y, et al.Electrochemical behaviour of Ni-base alloys exposed under oil/gas field environments[J]. Corros. Sci., 2009, 51(8): 1702
[17] Nie X H, Li X G, Du C W, et al.Temperature dependence of the electrochemical corrosion characteristics of carbon steel in a salty soil[J]. J. Appl. Electrochem., 2009, 39(2): 277
[18] Qiao Y X, Ren A, Liu F H.Electrochemical behavior of alloy 690 in NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 146
[18] (乔岩欣, 任爱, 刘飞华. 690合金在NaCl溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 146)
[19] Xing Y Y, Liu Z Y, Du C W, et al.Influence of H2S concentration and pH value on corrosion behavior of weld joint of X65 subsea pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2014, 34(3): 231
[19] (邢云颖, 刘智勇, 杜翠薇等. H2S浓度和pH值对X65海管钢焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 231)
[1] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[3] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[4] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[7] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[8] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[9] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[10] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[11] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[13] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[14] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[15] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
No Suggested Reading articles found!