Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (1): 70-74    DOI: 10.11902/1005.4537.2019.225
Current Issue | Archive | Adv Search |
Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution
SU Xiaohong,HU Huie(),KONG Xiaodong
Department of Basic Course, Naval University of Engineering, Wuhan 430033, China
Download:  HTML  PDF(2455KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 50% (volume fraction) W particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass matrix composite in 3% (mass fraction) NaCl solution was studied by electrochemical test, immersion test and surface analysis. The result showed that: in 3%NaCl solution, local corrosion microcells were formed on the surface of the composite due to the coupling effect of W particles and metallic glass matrix, the corrosion dissolution on the surface of metallic glass matrix is intensified as a local anodic zone, the corrosion current density of the composite increased, and the corrosion resistance of the composite is significantly lower than that of Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass. The incorporation of 50%W particles have no effect on the pitting resistance of the composite, the uniform corrosion dissolution occurs in the metallic glass site of the composite in 3%NaCl solution, and the composite has better pitting resistance.

Key words:  metallic glass matrix composite      corrosion behavior      galvanic couple      pitting resistance     
Received:  05 May 2019     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51575522)
Corresponding Authors:  Huie HU     E-mail:  huhuie_nue@163.com

Cite this article: 

SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 70-74.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.225     OR     https://www.jcscp.org/EN/Y2020/V40/I1/70

Fig.1  Open circuit potential-time curves of the two mater-ials in 3%NaCl solution
Fig.2  Polarization curves of the two materials
MaterialBaBcIcorr / A·cm-2
W particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass matrix composite1891074.38×10-6
Metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.51816956.41×10-7
Table 1  Electrochemical data of the two materials in 3% NaCl solution
Fig.3  Nyquist (a) and Bode diagrams of metallic glass matrix composite (b) and metallic glass materials (c)
Fig.4  SEM images of the metallic glass matrix composite (a, b) and metallic glass (c, d) after immer-sion in 3%NaCl solution for 21 d
Fig.5  EDS analysis of metallic glass matrix composite (a) and metallic glass (b) after immersion in 3%NaCl solution for 21 d
[1] Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24(10): 42
[2] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48(1): 279
[3] Mato S, Alcalá G, Woodcock T G, et al. Corrosion behaviour of a Ti-base nanostructure-dendrite composite [J]. Electrochim. Acta, 2005, 50(12): 2461
[4] Qin X J. Corrosion resistance of Zr41.5Ti14Cu13Ni10Be22.5 bulk amorphous alloy [J]. Corros. Sci. Prot. Technol., 2003, 15(1): 52
[4] (秦秀娟. Zr41.5Ti14Cu13Ni10Be22.5大块非晶的耐蚀性能 [J]. 腐蚀科学与防护技术, 2003, 15(1): 52)
[5] Conner R D, Choi-Yim H, Johnson W L. Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites [J]. J. Mater. Res., 1999, 14(8): 3292
[6] Conner R D, Dandliker R B, Johnson W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites [J]. Acta Mater., 1998, 46(17): 6089
[7] Inoue A, Kimura H. High-strength aluminum alloys containing nanoquasicrystalline particles [J]. Mater. Sci. Eng., 2000, A286(1): 1
[8] Hays C C, Kim C P, Johnson W L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions [J]. Phys. Rev. Lett., 2000, 84(13): 2901
[9] Zhang Z F, He G, Zhang H, et al. Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites [J]. Scr. Mater., 2005, 52(9): 945
[10] Srivastava A K, Das K, Toor S K, et al. Corrosion behavior of TiC and (Ti, W) C-reinforced Fe-17Mn and Fe-17Mn-3Al austenitic steel matrix in situ composites [J]. Metallogr., Microstruct., Anal., 2015, 4(5): 371
[11] Tiwari S, Balasubramaniam R, Gupta M. Corrosion behavior of SiC reinforced magnesium composites [J]. Corros. Sci., 2007, 49(2): 711
[12] Choi-Yim H, Conner R D, Szuecs F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites [J]. Scr. Mater., 2001, 45(9): 1039
[13] Gostin P F, Sueptitz R, Gebert A, et al. Comparing the corrosion behaviour of Zr66/Ti66-Nb13Cu8Ni6.8Al6.2 bulk nanostructure-dendrite composites [J]. Intermetallics, 2008, 16(10): 1179
[14] Wang Y H, Yang Y S. Amorphous Metallic Alloys [M]. Beijing: Metallurgical Industry Press, 1989
[14] (王一禾, 杨鹰善. 非晶态合金 [M]. 北京: 冶金工业出版社, 1989)
[15] Liu G F, Li H F, Zheng J S, et al. Corrosion behavior of 55% Al-Zn coating in salt solution containing hydrogen sulfide [J]. Mater. Prot., 2002, 35(5): 13
[15] (刘根凡, 李华飞, 郑家燊等. 硫化氢盐水中55%Al-Zn镀层的腐蚀行为 [J]. 材料保护, 2002, 35(5): 13)
[16] Ma H J, Gu Y H, Liu S J, et al. Local corrosion behavior and model of micro-arc oxidation HA coating on AZ31 magnesium alloy [J]. Surf. Coat. Technol., 2017, 331: 179
[1] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[3] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[7] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[8] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[9] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[10] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[11] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[12] Ziyang ZHANG,Shanlin WANG,Hengyu ZHANG,Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[13] Shuan LIU,Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[14] Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Shuan LIU,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution II—Temperature and Dissolved Oxygen[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[15] Zihao WANG,Yunhua HUANG,Jia LI,Lang YANG,Donghan XIE. Effect of Nb on Corrosion Behavior of Simulated Weld HAZs of X80 Pipeline Steel in Simulated Seawater Environments Correxxxxsponding to Shallow Sea and Deep Sea[J]. 中国腐蚀与防护学报, 2016, 36(6): 604-610.
No Suggested Reading articles found!