Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 624-630    DOI: 10.11902/1005.4537.2016.122
Orginal Article Current Issue | Archive | Adv Search |
Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater
Tingyong WANG1(),Lanying MA2,Xiangchen WANG1,Haibing ZHANG3,Kai CHEN1,Yonggui YAN3
1. Sunrui Marine Environment Engineering Co., Ltd, Qingdao 266101, China
2. China Petroleum Pipeline Material & Equipment Company Limited, Langfang 065000, China;
3. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, CSIC, Qingdao 266101, China
Download:  HTML  PDF(1263KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical performance of domestic Ti-alloy TA2, an imported Ti-alloy condenser tube and 316L stainless steel were studied comparatively in seawater by means of electrochemical measurements and slow strain rate method with emphasis on the effect of different polarization potentials on hydrogen embrittlement and the evolution characters of microstructure of the alloys, so that the reasonable protection potential range for condenser in seawater was obtained. The results revealed that galvanic corrosion occurred for the couple of 316L/Ti in seawater, which accelerated the corrosion of 316L stainless steel. When cathodic protection is applied to the above couple, the potential of Ti should be better maintained within a range of -0.50~-0.65 V (vs Ag/AgCl). Based on the above results, the cathodic protection design was conducted for the desired condenser, for which FeMn alloy were proposed as anodes to protect the condenser and worked effectively to ensure the long-term and safe operation.

Key words:  condenser      corrosion      cathodic protection      hydrogen embrittlement      potential     

Cite this article: 

Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 624-630.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.122     OR     https://www.jcscp.org/EN/Y2016/V36/I6/624

Fig.1  Titanium tube sample for tensile test
Fig.2  Polarization curves of titanium tube (a), TA2 (b) and 316L stainless steel (c) samples in sea water
Sample EmV IAcm-2 Hydrogen evolutionpotential / V
Foreign titanium tube -170 5.70×10-8 -0.70
Domestic TA2 -189 4.48×10-8 -0.70
316L steel -224 1.38×10-7 -0.85
Table 1  Electrochemical corrosion parameters for3 kinds of material sample
Fig.3  Stress-strain curves at different polarization potentials for titanium tube samples
Conditon Tensile strengthMPa Fracture strengthMPa Elongation
%
Reduction of area % Hydrogen embrittlement coefficient / %
In air 378.19 210.23 27.33 51.71 ---
Ecorr 387.13 274.96 26.40 48.07 7.05
-0.55 V 379.95 268.93 25.81 45.56 11.90
-0.60 V 388.14 271.20 25.48 43.67 15.55
-0.65 V 381.45 307.21 25.54 42.57 17.68
-0.70 V 372.52 277.14 24.16 38.79 24.99
-0.75 V 386.34 347.51 24.58 36.09 30.20
-0.80 V 374.93 241.88 23.68 34.05 34.16
-0.85 V 382.24 253.79 22.82 33.25 35.69
-0.90 V 382.24 265.24 21.61 33.79 34.66
Table 2  Mechanical performances for titanium tube samples
Fig.4  Hydrogen embrittlement coefficients of titaniumsamples at different polarization potentials
Fig.5  Micrographs of fracture at different potential for titanium samples: (a) in air, (b) Ecorr, (c) -0.55 V, (d) -0.60 V,(e) -0.65 V, (f) -0.70 V, (g) -0.75 V, (h) -0.80 V, (i) -0.85 V, (j) -0.90 V
Fig.6  Curves of cathodic current vs time at different temperatures in seawater
Fig.7  Corrosion morphology photo of condenserchamber
Seawater chamber Left surface
potential / V
Right surface potential / V Stretching bar
potential / V
1# inlet -0.57 -0.57 -0.55
1# outlet -0.58 -0.59 -0.55
2# inlet -0.64 -0.64 -0.50
2# outlet -0.45 -0.50 -0.51
Table 3  Protective potentials of condenser chamber in seawater (vs Ag/AgCl)
Fig.8  Condenser chamber protected by Fe-Mnalloy anode
[1] Wang Y Y.Corrosion and Anti-corrosion Control of Seawater Cooling System [M]. Beijing: Chemistry Industry Press, 2006
[1] (王曰义. 海水冷却水系统的腐蚀及其控制 [M]. 北京: 化学工业出版社, 2006)
[2] Gurrappa I.Cathodic protection of cooling water systems and selection of appropriate materials[J]. J. Mater. Process. Technol., 2005, 166(8): 256
[3] Shalaby H M.Failure investigation of Muntz tube sheet and Ti tubes of surface condenser[J]. Eng. Fail. Anal., 2006, 13(5): 780
[4] Meng C, Tian J J, Pang Q W.Cathodic protection technology in the application of coastal power plant condenser anticorrosion[J]. Corros. Sci. Technol. Prot., 2001, 13(s1): 137
[4] (孟超, 田俊杰, 庞其伟. 阴极保护技术在滨海电厂凝汽器防腐上的应用[J]. 腐蚀科学与防护技术, 2001, 13(s1): 137)
[5] Wang L, Liu S, Han L H, et al.Rehabilitation and reconstruction of cathodic protection system of condenser for a nuclear power station[J]. Total Corros. Control, 2014, 28(11): 78
[5] (王磊, 刘爽, 韩留红等. 某核电站凝汽器CPS阴极保护系统的恢复与改造[J]. 全面腐蚀控制, 2014, 28(11): 78)
[6] Zhang X S.An investigation and application of cathodic protection for condenser in power plant[J]. Sci. Technol. Inf., 2010, (36): 96
[6] (张祥胜. 阴极保护防蚀技术在火力发电厂凝汽器上的应用及研究[J]. 科技资讯, 2010, (36): 96)
[7] Chen L J.An investigation and application of cathodic protection system for condenser in coastal power plant[J]. Power Stn. Auxiliary Equip., 2012, 33(3): 25
[7] (陈丽君. 滨海电厂凝汽器阴极保护系统的研究及应用[J]. 电站辅机, 2012, 33(3): 25)
[8] Xu C W, Zheng M C, Xu G X.An investigation and application of cathodic protection system for condenser used in 300 MW turbine-generator unit[J]. J. Wuhan Univ. Hydraul. Electr. Eng., 1999, 32(5): 82
[8] (许崇武, 郑敏聪, 许国新. 600MW机组凝汽器阴极保护系统的研究及应用[J]. 武汉水利电力大学学报, 1999, 32(5): 82)
[9] Qu Z, Zhang K Z, Sun B.Corrosion and protection of the condenser and conjoint pipeline used in seashore power plant[J]. Corros. Prot., 2005, 26(2): 72
[9] (曲政, 张奎志, 孙彬. 滨海电厂凝汽器及相连管道的腐蚀与防护[J]. 腐蚀与防护, 2005, 26(2): 72)
[10] Zhang P, Su L H, Wang G.The effect of cooling water temperature on cathodic protection potential of condenser used in the coastal power plant[J]. Corros. Prot. Petrochem. Ind., 2015, 32(5): 5
[10] (张鹏, 苏林海, 王贵. 冷却水温度对滨海电厂凝汽器水室阴极保护电位的影响[J]. 石油化工腐蚀与防护, 2015, 32(5): 5)
[11] Li Z, Zhou L J, Xu H L.Application analysis of anti-corrosion techniques of condenser for coastal nuclear power plant[J]. Power Stn. Auxiliary Equip., 2012, 33(3): 19
[11] (李振, 周李军, 许海伦. 滨海核电站凝汽器防腐技术的应用分析[J]. 电站辅机, 2012, 33(3): 19)
[12] Wang C M, Wang Y N, Gao Y Z, et al.Corrosion analysis and impressed current cathodic protection of tube sheets of condenser in nuclear power plant[J]. Total Corros. Control, 2012, 26(1): 44
[12] (王成铭, 王永年, 高玉柱等. 核电站凝汽器管板的腐蚀分析及外加电流阴极保护[J]. 全面腐蚀控制, 2012, 26(1): 44)
[13] Hu X W, Huang J, Xu C W,et al.Impressed current cathodic protection system for condenser of 300 MW turbine-generator unit[J]. East China Electr. Power, 2001, 29(12): 46
[13] (胡学文, 黄杰, 许崇武等. 300MW机组凝汽器的外加电流阴极保护[J]. 华东电力, 2001, 29(12): 46)
[14] Liu Z Y, Yang J.Cathodic protection of seawater condenser water boxes[J]. Mater. Perform., 2013, 52(9): 32
[15] National marine and ship standardization technical committee SAC/TC 12, Sub committee SC 4, Ship material application technology. GB/T16166-2013. Sacrificial anode cathodic protection for seawatercooling system in coastal power station [S]. Beijing: China Standard Press, 2014
[15] (全国海洋船标准化技术委员会船用材料应用工艺分技术委员会 (SAC/TC 12/SC 4). GB/T16166—2013. 滨海电厂海水冷却水系统牺牲阳极阴极保护 [S]. 北京: 中国标准出版社, 2014)
[16] Technical Committee ISO/TC 67, Subcommittee SC 2, Pipeline transportation systems. ISO 15589-2:2004, Petroleum and natural gas industries—Cathodic protection of pipeline transportation systems —Part 2: Offshore pipelines, 2007
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!