Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (2): 147-152    DOI: 10.11902/1005.4537.2013.074
Original Article Current Issue | Archive | Adv Search |
Evaluation of Soil Corrosivity for Ground Grid of Substations in an Area by Factor Analysis
ZHU Zhiping1, WANG Leijing1, PEI Feng2, YIN Zhaohui1, WU Fayuan2, TIAN Xu2
1. School of Chemical and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China;
2. Jiangxi Electric Power Research Institute, Nanchang 330096, China
Download:  HTML  PDF(691KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Soils in a depth corresponding to half length of the buried grouding grids are sampled from sites of 123 substations of a 110 kV transmission network in an area. Their physical and chemical properties (11 indexes) are measured, which then are analyzed and processed by using the method of factor analysis. The results show that soil corrosivity for substation ground grid in this area is mainly influenced by calcium and magnesium ions, pH value, chloride ion and water content. A comprehensive evaluation is made based on these five key corrosive factors. It follows that the soil corrosivity for substation ground grids in this area may be divided into four levels as: exceptionally strong (11 substations), strong (86 substations), relatively strong (14 substations) and middle (12 substations). Meanwhile, the corrosivity of all the soil samples are evaluated according to German Beckman standard method. The results of the two methods are in accord with each other, which indicates that factor analysis can be applied to evaluate the soil corrosivity for substation ground grid with a good reliablility.
Key words:  grounding grid      soil      corrosion      factor analysis     
Received:  17 May 2013     
ZTFLH:  TM632+.2  

Cite this article: 

ZHU Zhiping, WANG Leijing, PEI Feng, YIN Zhaohui, WU Fayuan, TIAN Xu. Evaluation of Soil Corrosivity for Ground Grid of Substations in an Area by Factor Analysis. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 147-152.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.074     OR     https://www.jcscp.org/EN/Y2014/V34/I2/147

[1] Zhu Z P, Ma X, Jing L L, et al. Soil corrosion evaluation of substation and metal corrosion characteristics analysis for grounding grid [J]. Insul. Surge Arresters, 2009, (4): 18-22
(朱志平, 马骁, 荆玲玲等. 变电站土壤腐蚀性评价及接地网金属腐蚀特性分析 [J]. 电磁避雷器, 2009, (4): 18-22)
[2] Yan A J, Chen Y, Feng L J. Soil corrosion performance of several grounding net materials [J]. Corros. Sci. Prot. Technol., 2010, 22(3):197-199
(闫爱军, 陈沂, 冯拉俊. 几种接地网材料在土壤中的腐蚀特性研究 [J]. 腐蚀科学与防护技术, 2010, 22(3): 197-199)
[3] Fu J, Pei F, Zhu Z P, et al. Influence of moisture for corrosion behavior of grounding steel in half-deserted soil [J]. Anti-corros. Method. Mater., 2013, 60(3): 148-152
[4] Tan Z H, Zhu Z P, Pei F, et al. Influence of DC stray current on the corrosion behavior of grounding steel in different moistures soil [J]. Corros. Sci. Prot. Technol., 2013, 25(3): 207-212
(谭铮辉, 朱志平, 裴锋等. 直流杂散电流对不同含水率土壤中接地网材料腐蚀特性的影响 [J]. 腐蚀科学与防护技术, 2013, 25(3):207-212)
[5] Tan Z H, Zhu Z P, Fu J, et al. Effects of Cl- on corrosion behavior of Q235 galvanized flat steel in the presence of direct stray current in grounding grid [A]. NACE International East Asia & Pacific Rim Area Corrosion Conference [C]. Shanghai, 2012: 256-263
[6] Wu J, Zhang D M, Sun H Z. Research of soil corrosion [A]. Data Compilation of National Soil Corrosion Test Site [C]. National Science and Technology Commission National Soil Corrosion Test Sites. Shanghai: Shanghai Jiaotong University Press, 1992
(吴汮, 张道明, 孙慧珍. 土壤腐蚀性研究 [A] .全国土壤腐蚀试验网站资料选编 [C]. 国家科委全国土壤腐蚀试验网站. 上海: 上海交通大学出版社, 1992)
[7] Yin G Q, Zhang L H, Chang S W, et al. A brief introduction of methods used in soil corrosion researches [J]. Corros. Sci. Prot. Technol., 2004, 16(6): 367-370
(尹桂勤, 张莉华, 常守文等. 土壤腐蚀研究方法概述 [J]. 腐蚀科学与防护技术, 2004, 16(6): 367-370)
[8] Li S L, Yang Z Y, Qu L S, et al. Application of factors analysis forsurvey in regional soil corrosivity [J]. Corros. Sci. Prot. Technol., 1995, 7(3): 263-265
(李双林, 杨志勇, 曲良山等. 因子分析法在土壤腐蚀性研究中的应用 [J]. 腐蚀科学与防护技术, 1995, 7(3): 263-265)
[9] Weng Y J, Li X Y. Prediction of soil corrosively along long-distance pipelines with principal component analysis [J]. Acta Petro. Sin., 1993, 14(1): 117-123
(翁永基, 李相怡. 长输管道沿线土壤腐蚀等级的预测 [J]. 石油学报, 1993, 14(1): 117-123)
[10] Wang K Q, Zhang C. Factor analysis on soil corrosion of buried steel pipeline [J]. Oil Gas Storage Transp., 2009, 28(6): 52-55
(王凯全, 张弛. 埋地钢质管道土壤腐蚀因子分析 [J]. 油气储运, 2009, 28(6): 52-55)
[11] Lu J. Practical Fuzzy Mathematics [M]. Beijing: Science and Technology Literature Press, 1989
(荩垆. 实用模糊数学 [M]. 北京: 科技文献出版社, 1989)
[12] Tan R B,Mei X R. Practical Ttutorial of SPSS Statistical Analysis [M]. Beijing: Science Press, 2007
(谭荣波, 梅晓仁. SPSS 统计分析实用教程 [M]. 北京: 科学出版社, 2007)
[13] Yu J Y, He X H. Application and Data Analysis Statistical Analysis of SPSS [M]. Beijing: Posts and Telecom Press, 2003
(余建英, 何旭洪. 数据统计分析与SPSS应用 [M]. 北京: 人民邮电出版社, 2003)
[14] Wu X D. Corrosion analysis and countermeasures for grounding grid of 500 kV transmission lines [J]. Corros. Prot., 2002, 23(12): 545-547
(吴向东. 500 kV输电线接地网腐蚀分析及防护措施 [J]. 腐蚀与防护, 2002, 23(12): 545-547)
[15] Yin Y D, Zhang S Q, Li H X, et al. Effect of carbon steel inhomogeneity and anions in soils on corrosion [J]. Corros. Sci. Prot. Technol., 1995, 7(1): 81-83
(银耀德, 张淑泉, 李洪锡等. 碳钢的不均匀性和土壤中阴离子对腐蚀的影响 [J]. 腐蚀科学与防护技术, 1995, 7(1): 81-83)
[16] Yin G Y, Jiang Y. Comparison of soil corrosivity evaluation method [J]. Anticorros. Insul. Technol., 2005, 15(4): 1-6
(尹国耀, 姜勇. 土壤腐蚀性评价方法比较 [J]. 防腐保温技术, 2005, 15(4): 1-6)
[17] Liu W X, Sun C. Effects of different catholic ions on the corrosion of carbon steel in soils [J]. Total Corros. Control, 2006, 20(6): 10-13
(刘文霞, 孙成. 土壤中阴离子对碳钢腐蚀的影响 [J]. 全面腐蚀控制, 2006, 20(6): 10-13)
[18] Fu J, Zhu Z P, Tan Z H, et al. The research of cathodic protection of grounding grid in the saline soils [A]. NACE International East Asia & Pacific Rim Area Corrosion Conference [C]. Shanghai, 2012: 241-247
[19] Li M C, Lin H C, Cao C N, et al. Influence of moisture content on soil corrosion behavior of carbon steel [J]. Corros. Sci. Prot. Technol., 2000, 12(4): 218-220
(李谋成, 林海潮, 曹楚南等. 湿度对碳钢材料在中性土壤中腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2000, 12(4): 218-220)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!