Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (2): 153-159    DOI: 10.11902/1005.4537.2013.091
Original Article Current Issue | Archive | Adv Search |
Polarization Performance of Two Aluminium AlloySacrificial Anodes
LIANG Hu1, DU Min1, ZHANG Youhui2
1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;
2. Offshore Oil Engineering (Qingdao) Co., Ltd., Qingdao 266520, China
Download:  HTML  PDF(1499KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The polarization performance of two kinds of Al-Zn-In-Mg-Ti sacrificial anodes at different potential was studied by open circuit potential, constant current test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the anodes were difficult to dissolve because of an oxide scale could form at open circuit potential. After an impressed current was applied to the anodes, the electric double layer capacitance gradually increased, the polarization resistance was gradually reduced, the oxide film gradually ruptured. With the increasing of polarization potential, the anode current increased rapidly, while the polarization resistance decreased and finally became stable. The anode with smaller polarization resistance exhibited a good electrochemical performance, which was consistent with the 4 d evaluation results by an accelerated test.
Key words:  open circuit potential      constant current test      cyclic voltammetry      electrochemical impedance spectroscopy      polarization performance     
Received:  06 May 2013     
ZTFLH:  TG174.2  

Cite this article: 

LIANG Hu, DU Min, ZHANG Youhui. Polarization Performance of Two Aluminium AlloySacrificial Anodes. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 153-159.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.091     OR     https://www.jcscp.org/EN/Y2014/V34/I2/153

[1] Reding J T, Newport J J. The influence of alloying elements on aluminum anodes in sea water [J]. Mater. Prot., 1966, 5(11): 15-18
[2] Sakano T, Toda K, Hanada M. Test on the effect of indium for high performance aluminum anodes [J]. Mater. Prot., 1966, 5(11): 45-50
[3] GB/T17848-1999. Test Methods for Electrochemical Properties of Sacrificial Anodes [S]. Beijing: China Standard Press, 2002
[4] Pu Z Q. Study method of aluminum alloy sacrificial anode [J]. Build. Mater. Decoration, 2006, 2(2): 207
(蒲志强. 铝合金牺牲阳极的研究方法 [J]. 建材与装饰, 2006, 2(2): 207)
[5] Ma J L, Wen J B, Li G X, Xv C H. The corrosion behavior of Al-Zn-In-Mg-Ti alloy in NaCl solution [J]. Corros. Sci., 2010, 52: 534-539
[6] Ma J L, Wen J B. The effects of lanthanum on microstructure and electrochemical properties of Al-Zn-In based sacrificial anode alloys [J]. Corros. Sci., 2009, 51: 2115-2119
[7] Zhao R, Du M, Wang C. The electrochemical behavior of Al-Mg-Ga-Sn sacrificial anode materials [J]. Periodical Ocean Univ. China, 2012, 42(suppl.): 378-383
(赵锐, 杜敏, 王超. Al-Mg-Ga-Sn牺牲阳极材料的电化学行为研究 [J]. 中国海洋大学学报, 2012, 42(增刊): 378-383)
[8] Gong Y Q. College Physics Tutorial [M]. Beijing: National Defense Industry Press, 2011
(龚勇清. 大学物理教程 [M]. 北京: 国防工业出版社, 2011)
[9] He J G, Wen J B, Li X D, et al. Electrochemical impedance spectra of Al-Zn-Sn-Ga anode during corrosion process [J]. Chin. J. Nonferrous Met., 2012, 22(1): 189-190
(贺俊光, 文九巴, 李旭东等. AI-Zn-Sn-Ga阳极腐蚀过程的电化学阻抗谱 [J]. 中国有色金属学报, 2012, 22(1): 189-190)
[10] Cao C N, Wang J, Lin H C. Effect of Cl- ion on the impedance of passive-film-covered electrodes [J]. J. Chin. Soc. Corros. Prot., 1989, 9(4): 261-270
(曹楚南, 王佳, 林海潮. 氯离子对钝态金属电极阻抗谱的影响 [J]. 中国腐蚀与防护学报, 1989, 9(4): 261-270)
[11] Wang Q Z, Du M. Marine Corrosion and Protection Technology [M]. Qingdao: Qingdao Marine University Press, 2001: 308-309
(王庆璋, 杜敏. 海洋腐蚀与防护技术 [M]. 青岛: 青岛海洋大学出版社, 2001: 308-309)
[12] Pu Z Q. Study on aluminum sacrificial anode in high-temperature seawater and sea mud [D]. Guangzhou: South China University of Technology, 1993
(浦志强. 用于高温海水及海泥中铝合金牺牲阳极的研究 [D]. 广州: 华南理工大学, 1993)
[13] Reding J T, Newport J J. The influence of alloying elements on aluminum anodes in sea water [J]. Mater. Prot., 1966, 5(12): 15-18
[14] Zhu C D, Li Y. Develop of new and efficient sacrificial anode for different temperature seawater and sea mud [J]. China Offshore Oil Gas(Eng.) 1999, 11 (1): 28-32
(朱承德, 李异. 用于不同温度的海水,海泥中新型高效牺牲阳极的研制 [J]. 中国海上油气 (工程), 1999, 11(1): 28-32)
[15] Li Y, Li J S, Deng H P. Research on failure sacrificial anode used on seabed mud oil delivery pipeline in south China sea oil field [J]. J. South China Univ. Technol. (Nat. Sci.), 2001, 29(7): 24-27
(李异, 李建三,邓和平. 南海油田海底输油管线失效牺牲阳极的研究 [J]. 华南理工大学学报 (自然科学版), 2001, 29(7): 24-27)
[16] Li Y, Li Y G, Li J S. Comparative study of aluminum alloys sacrificial anode for oil-carrying pipelines in sea bed mud [J]. Corros. Sci. Prot. Technol., 2001, 13(6): 351-354
(李异, 李永广, 李建三. 海底输油管线牺牲阳极用Al合金的选材研究 [J]. 腐蚀科学与防护技术, 2001, 13(6): 351-354)
[17] Li Y, Li Y G. The analysis for failure Al sacrificial anode used in sea bed pipelines [J]. J. Chin. Soc. Corros. Prot., 2002, 22(1): 60-63
(李异, 李永广. 在役海底管线牺牲阳性失效分析 [J]. 中国腐蚀与防护学报, 2002, 22(1): 60-63)
[1] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[3] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[6] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[7] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[8] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[9] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[10] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[12] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[13] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[14] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] Yalin CHEN, Wei ZHANG, Qi WANG, Jia WANG. Debonding Mechanism of Organic Coating with Artificial Defect in Areas Nearby Water-line in 3.5%NaCl Solution by WBE Technique-II[J]. 中国腐蚀与防护学报, 2017, 37(4): 322-328.
No Suggested Reading articles found!