Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (1): 34-39    DOI:
Research Articles Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF CARBON STEEL IN H2S-HCL-H2O AT 90℃ Ⅱ-The Effect of HCl Concentration on Corrosion Behavior of Carbon Steel in H2S Solutions
TANG Junwen1, SHAO Yawei1, CHEN Zhen2, ZHANG Tao1,MENG Guozhe1, WANG Fuhui1,3
1. Corrosion and Protection Laboratory, College of Materials Science and Chemical Engineering,Harbin Engineering University, Harbin 150001
2. Academy of Lanzhou Petrochemical Company, CNPC, Lanzhou 730060;
3. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(1751KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The electrochemical behavior of SAE-1020 carbon steel in acidic simulation solutions containing H2S with different concentrations of HCl at 90℃ was investigated by mass loss method, electrochemical measurements, SEM observations and XRD. The results indicated that the cathodic depolarization was promoted greatly and the corrosion rate of carbon steel increased remarkably with the increase of HCl concentration in H2S-containing solutions. Large numbers of corrosion holes formed on carbon steel in H2S-containing solution without HCl, whereas only the uniform corrosion characteristic was observed on carbon steel surface in the simulation solutions containing different concentrations of HCl. Mackinawite was the sole corrosion product formed on the carbon steel surface in the H2S-containing solutions with and without HCl.
Key words:  carbon steel      hydrogen chloride      hydrogen sulfide      corrosion     
Received:  29 December 2009     
ZTFLH: 

TG172

 
Corresponding Authors:  SHAO Yawei     E-mail:  shaoyawei@ hrbeu.edu.cn

Cite this article: 

TANG Junwen, SHAO Yawei, CHEN Zhen, ZHANG Tao,MENG Guozhe, WANG Fuhui. CORROSION BEHAVIOR OF CARBON STEEL IN H2S-HCL-H2O AT 90℃ Ⅱ-The Effect of HCl Concentration on Corrosion Behavior of Carbon Steel in H2S Solutions. J Chin Soc Corr Pro, 2011, 31(1): 34-39.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I1/34

[1] Gu W P, Liu X H. Corrosion protection and analysis of the corrosion environment for the processing imported high-sulfur crude oils [J]. Corros. Prot. Petrochem. Ind., 1994, (2): 56-60

    (顾望平,刘小辉. 加工进口高硫原油腐蚀环境分析与防护 [J]. 石油化工腐蚀与防护,1994, (2): 56-60)

[2] Veloz M A, Gonzalez I. Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S [J]. Electrochim. Acta, 2002, 48: 135-144

[3] Gu Q F, Li W G. Corrosion and Protection of Equipment in Oil Refinery [M]. Beijing: China Petrochemical Press, 2000

    (谷其发,李文戈. 炼油厂设备腐蚀与防护图解 [M]. 北京:中国石化出版社,2000)

[4] Ma H Y, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions [J].Corros. Sci., 2000, 42: 1669-1683

[5] Cheng X L, Ma H Y, Zhang J P, et al. Corrosion of iron in acid solutions with hydrogen sulfide [J]. Corrosion, 1998, 54: 369-376

[6] Huang H H, Tsai W T, Lee J T. Effect of H2S on the electrochemical behavior of steel weld in acidic chloride solutions [J].Mater. Chem. Phys., 1999, 58(2): 177-181

[7] Huang H H, Tsai W T, Lee J T. Electrochemical behavior of the simulated heat-affected zone of A516 carbon steel in H2S solution [J]. Electrochim. Acta, 1996, 41(7/8): 1191-1199

[8] Vedage H, Ramanarayanan T A, Mumford J D, et al. Electrochemical growth of iron sulfide films in H2S-saturated chloride media [J].Corrosion, 1993, 49(2): 114-121

[9] Tang J W, Shao Y W, Guo J B, et al. Study on corrosion behavior of carbon steel in H2S-HCl-H2O at 90℃:Ⅰ-The effect of H2S concentration on the corrosion behavior of carbon steel [J]. J.Chin. Soc. Corros. Prot., 2011, 31(1): 11-16

    (唐俊文,邵亚薇,郭金彪等. 碳钢在90℃H2S-HCl-H2O环境下腐蚀行为研究:Ⅰ-H2S浓度对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2011, 31(1): 11-16)

[10] Cao C N. Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 1982

     (曹楚南. 腐蚀电化学 [M]. 北京:化学工业出版社,1982)

[11] Shao H B, Wang X Y, Wang J M, et al. The cooperative inhibition effects of alkaline earth metal ions and EDTA on the corrosion of pure aluminum in an alkaline solution [J]. Acta Phys. Chim. Sin.,2006, 22(3): 312-315

[12] Shao H B, Wang J M, Zhang Z, et al. Electrochemical impedance spectroscopy analysis on the electrochemical dissolution of aluminum in an alkaline solution [J]. J. Electroanal. Chem., 2003, 549: 145-150

[13] Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions: Ⅲ-Electrochemical behavior of carbon steel in the different pH solutions containing H2S [J]. J. Chin. Soc. Corros. Prot., 2000,20(2):97-104

     (杨怀玉,陈家坚,曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究:Ⅲ-不同pH值H2S溶液中碳钢的腐蚀电化学行为 [J]. 中国腐蚀与防护学报,2000,20(2):97-104)

[14] Huang H H, Tsai W T, Lee J T. The influences of microstructure and composition on the electrochemical behavior of A516 steel weldment [J]. Corros. Sci., 1994, 36(6): 1027-1038

[15] Epelboin I, Morel P, Takenouti H. Corrosion inhibition and hydrogen adsorption in the case of iron in a sulfuric aqueous medium [J]. J. Electrochem. Soc., 1971, 118(8): 1282-1286

[16] Keddam M, Mattos O R, Takenouti H. Reaction model for iron dissolution studied by electrode impedance [J]. J. Electrochem. Soc., 1981,128(2): 257-266

[17] Huang H H, Tsai W T, Lee J T. Electrochemical behavior of A516 carbon steel in solutions containing hydrogen sulfide [J]. Corrosion,1996, 52(9): 708-713

[18] Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions: Ⅰ-Corrosion behavior of carbon steel and growth of sulfide film on it in acidic solutions containing H2S [J]. J. Chin. Soc. Corros. Prot., 2000,20(1):1-7

     (杨怀玉,陈家坚,曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究:Ⅰ-酸性H2S溶液中碳钢的腐蚀行为及硫化物膜的生长 [J]. 中国腐蚀与防护学报,2000,20(1):1-7)

[19] Gerus B R D. H2S Corrosion in Oil and Gas Production-A Compilation of Classic Papers [M]. NACE, 1981

[20] Fragiel A, Serna S, Perez R. Electrochemical study of two microalloyed pipeline steels in H2S environments [J].Int. J. Hydrogen Energy, 2005, 30: 1303-1309

[21] Sosa E, Cabrera-Sierra R, Rincoon M E, et al. Evolution of non-stoichiometric iron sulfide film formed by electrochemical oxidation of carbon steel in alkaline sour environment [J].Electrochim. Acta, 2002, 47(8): 1179-1208

[22] Foroulis Z A. Role of solution pH on wet H2S cracking in hydrocarbon production [J]. Corros. Prev. Control, 1993, 8: 84-89

[23] Newman R C, Rumash K, Webster J. The effect of pre-corrosion on the corrosion rate of steel in neutral solutions containing sulphide: Relevance to microbially influenced corrosion [J]. Corros. Sci.,1992, 33(12): 1877-1884

[24] Milton C. Kansite=Mackinawite FeS [J]. Corrosion, 1966, 22(7):191-193

[25] Berner R A. Tetragonal iron sulfide [J]. Science, 1962, 137: 669

[26] French E C. Corrosion and hydrogen blistering control in sour water systems [J]. Mater. Perform., 1978, (3): 20-25

[27] Huamphries M J, Sorell G. Corrosion control in crude oil distillation units [J]. Mater. Perform., 1976, (2): 13

[28] Shoesmith D W, Taylor P, Bailey M G, et al. The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hydrogen sulfide at 21℃ [J]. J. Electrochem. Soc.,1980, 127: 1007-1015

[29] Cao C N. Principle of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2004

     (曹楚南. 腐蚀电化学原理 [M]. 北京:化学工业出版社,2004)
 
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!