Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (1): 28-33    DOI:
Research Articles Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF CARBON STEEL IN H 2S-HCl-H2O AT 90℃ Ⅰ-The Effect of H2S Concentration on the Corrosion Behavior of Carbon Steel
TANG Junwen1, SHAO Yawei1, GUO Jinbiao2, ZHANG Tao1,MENG Guozhe1, WANG Fuhui1,3
1. Corrosion and Protection Laboratory,College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2. The Academy of Lanzhou Petrochemical Company, CNPC, Lanzhou 730060
3. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(2389KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The electrochemical behavior of low carbon steel in acidic simulation solutions containing different concentrations of H2S at 90℃ was investigated by mass loss method, electrochemical measurements and observations of scanning electron microscope (SEM) and X-ray radiation diffaction (XRD). The results showed that the cathodic depolarization was enhanced greatly and the corrosion rate of carbon steel increased remarkably with the increase of H2S concentration. The severe corrosion holes were observed on the carbon steel surface in the H2S-containing solutions. The corrosion products layer deposited on carbon steel were mainly composed of mackinawite, which became loose,easily cracked and sloughed off with increasing concentration of H2S.
Key words:  carbon steel      hydrogen sulfide      corrosion      mackinawite     
Received:  24 November 2009     
ZTFLH: 

TG172

 

Cite this article: 

TANG Junwen, SHAO Yawei, GUO Jinbiao, ZHANG Tao,MENG Guozhe, WANG Fuhui. CORROSION BEHAVIOR OF CARBON STEEL IN H 2S-HCl-H2O AT 90℃ Ⅰ-The Effect of H2S Concentration on the Corrosion Behavior of Carbon Steel. J Chin Soc Corr Pro, 2011, 31(1): 28-33.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I1/28

[1] Gu W P, Liu X H. Corrosion protection and analysis of the corrosion environment for the processing imported high-sulfur crudes [J].Corros. Prot. Petrochem. Ind., 1994, 11\linebreak(2): 56-60

    (顾望平,刘小辉. 加工进口高硫原油腐蚀环境分析与防护 [J]. 石油化工腐蚀与防护,1994, 11(2): 56-60)

[2] Veloz M A, Gonz\'{a}lez I. Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S [J].Electrochim. Acta, 2002, 48: 135-144

[3] Aezola S, Genesca J. The effect of H2S concentration on the corrosion behavior of API 5L X-70 steel [J]. J. Solid State Electrochem.,2005, 8(4): 197-200

[4] Ma H Y, Cheng X L, Chen S H, et al. Theoretical interpretation on impedance spectra for anodic iron dissolution in acidic solutions containing hydrogen sulfide [J]. Corrosion, 1998, 54: 634-640

[5] Ma H Y, Cheng X L, Chen S H, et al. An ac impedance study of the anodic dissolution of iron in sulfuric acid solutions containing hydrogen sulfide [J]. J. Electroanal. Chem., 1998, 451:11-17

[6] Ma H Y, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions [J]. Corros.Sci., 2000, 42: 1669-1683

[7] Cheng X L, Ma H Y, Zhang J P, et al. Corrosion of iron in acid solutions with hydrogen sulfide [J]. Corrosion, 1998, 54: 369-376

[8] Cheng X L, Ma H Y, Chen X L, et al. Electrochemical behavior of chromium in acid solutions with H2S [J]. Corros. Sci., 1999, 41:773-788

[9] Cheng X L, Ma H Y, S. Chen, et al. Corrosion of nickel in acid solutions with hydrogen sulphide [J]. Corros. Sci., 2000, 42: 299-311

[10] Choi Y S, Kim J G. Aqueous corrosion behavior of weathering steel and carbon steel in acid-chloride environments [J]. Corrosion,2000, 56: 1202-1210

[11] Huang H H, Tsai W T, Lee J T. Cracking characteristics of A516 steel weldment in H2S containing environments [J]. Mater. Sci. Eng., 1994, A188(1/2): 219-227

[12] Huang H H, Lee J T, Tsai W T. Effect of H2S on the electrochemical behavior of steel weld in acidic chloride solutions [J]. Mater.Chem. Phys., 1999, 58(2): 177-181

[13] Huang H H, Tsai W T, Lee J T. Electrochemical behavior of the simulated heat-affected zone of A516 carbon steel in H2S solution [J]. Electrochim. Acta, 1996, 41(7/8): 1191-1199

[14] Vedage H, Ramanarayanan T A, Mumford J D, et al. Electrochemical growth of iron sulfide films in H2S-saturated chloride media [J].Corrosion, 1993, 49(2): 114-121

[15] Rehan H H, Salih S A, El-Daley H, et al. Effect of sulfide ions on the corrosion behavior of mild steel in acetate buffer [J]. Collect.Czech. Chem. Commun., 1993, 58: 547\linebreak-554

[16] Liu J, Lin Y, Yong X, et al. Study of cavitation corrosion behaviors and mechanism of carbon steel in neutral sodium chloride aqueous solution [J]. Corrosion, 2005, 61(11): 1061-1069

[17] Doche M L, Hihn J Y, Mandroyan A, et al. Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media [J].Ultrason. Sonochem., 2003, 10: 357-362

[18] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 1994:104

     (曹楚南. 腐蚀电化学 [M]. 北京:化学工业出版社,1994: 104)

[19] Shoesmith D W, Taylor P, Bailey M G, et al. The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hydrogen sulfide at 21℃ [J]. J. Electrochem. Soc., 1980, 127: 1007-1015

[20] Uhlig H H, Revie R W. Corrosion and Corrosion Control(3rd) [M].New York: John Wiley and Sons, 1991: 120

[21] Iofa Z A, Batralov V V, Cho-Ngok-Ba. Influence of anion adsorption on the action of inhibitors on the acid corrosion of iron and cobalt [J]. Electrochim. Acta, 1964, 9: 1645

[22] Sosa E, Cabrera-Sierra R, Rincoon M E, et al. Evolution of non-stoichiometric iron sulfide film formed by electrochemical oxidation of carbon steel in alkaline sour environment [J].Electrochim. Acta, 2002, 47(8): 1179-1208

[23] Foroulis Z A. Role of solution pH on wet H2S cracking in hydrocarbon production [J]. Corros. Prev. Control, 1993, 8: 84-89

[24] Newman R C, Rumash K, Webster J. The effect of pre-corrosion on the corrosion rate of steel in neutral solutions containing sulphide: Relevance to microbially influenced corrosion [J]. Corros. Sci.,1992, 33(12): 1877-1884

[25] Pound B G, Wright G A, Sharp R M. The anodic behavior of iron in hydrogen sulfide solutions [J]. Corrosion,1989, 45: 386-392

[26] Milton C. Kansite=Mackinawite FeS [J]. Corrosion, 1966,22(7): 191-193

[27] Pound B G, Sharp R M, Wright G A. The corrosion of carbon steel and stainless steels in simulated geothermal media [J]. Aust. J. Chem., 1985, 38: 1133-1140

[28] Berner R A. Tetragonal iron sulfide [J]. Science, 1962, 137: 669-672
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!