Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (1): 16-20    DOI:
技术报告 Current Issue | Archive | Adv Search |
INHIBITION PERFORMANCE OF IMIDAZOLINE INHIBITORS FOR Q235-A STEEL IN THE SIMULATED PRODUCING WELL WATER SATURATED WITH CO2
WANG Bin; ZHANG Jing; DU Min
Key Laboratory of Marine Chemistry Theory and Technology; Ministry of Education; Ocean University of China; Qingdao 266100
Download:  PDF(630KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inhibition performance of three kinds of imidazoline derivative inhibitors for Q235-A steel in the simulated producing well water saturated with CO2 at 85℃ were studied using weight loss and electrochemistry techniques including electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results of weight loss showed that the three kinds of imidazoline derivative inhibitors all had good inhibitor properties at concentration of 40 mg/L, the inhibition efficiency of inhibitor HSJ-3 was up to 80 %. The sharp decrease of anodic current density and positive shift of corrosion potential (Ecorr) indicated that these imidazoline derivative inhibitors were all anodic inhibitors which worked as “negative catalysis”. The results of EIS showed that the film of inhibitor HSJ-1 with alkyl formed slowly; the film of inhibitor HSJ-2 with thiourido group formed fast and could be auto-repaired; the film of inhibitor HSJ-3 with phosphonic group also formed fast, but decayed in a short time.

Key words:  CO2 corrosion      imidazoline derivative inhibitors      polarization curve      EIS     
Received:  19 August 2008     
ZTFLH: 

O646

 
Corresponding Authors:  DU Min     E-mail:  ssdm99@ouc.edu.cn

Cite this article: 

WANG Bin; ZHANG Jing; DU Min. INHIBITION PERFORMANCE OF IMIDAZOLINE INHIBITORS FOR Q235-A STEEL IN THE SIMULATED PRODUCING WELL WATER SATURATED WITH CO2. J Chin Soc Corr Pro, 2010, 30(1): 16-20.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I1/16

[1]Li J, Lu M X, Yan M L, et al. Corrosion mechanism of steel P110 in CO2-containing simulated oilfield brine [J]. J. Chin. Soc.Corros. Prot., 1999, 19(5): 286-290
[2](李静, 路民旭, 严密林等. 模拟油田水介质中P110钢的CO2腐蚀机理 [J]. 中国腐蚀与防护学报, 1999, 19(5): 286-290)
[3]Smart J. A review of erosion corrosion in oil and gas production [A]. Corrosion/1990 [C]. NACE, Houston,TX: NACE, 1990: 10
[4]Hou J G, Lu M X, Chang W, et al. Progress in corrosion influences and rate prediction of sweet corrosion affected by crude oils [J]. J. Chin. Soc. Corros. Prot., 2005, 25(2): 124-128
[5] 侯建国, 路民旭, 常炜等. 原油对CO2腐蚀过程的影响及相应腐蚀速率预测研究进展 [J]. 中国腐蚀与防护学报, 2005, 25(2):124-128
[6]Zhao J M, Gu M G, Zuo Y. Influencing factors on corrosion of mild steel in carbon dioxide environment [J]. J. Beijing Univ. Chem. Technol.,2005, 32(5): 71-74
[7](赵景茂, 顾明广, 左禹. 碳钢在CO2溶液中腐蚀影响因素的研究 [J]. 北京化工大学学报, 2005, 32(5): 71-74)
[8]Li C F, Wang B, Zhang Y, et al. Research progress of CO2 corrosion in oil/gas field exploitation [J]. J. Southwest Pet. Inst.,2004, 26(2): 42-45
[9] 李春福, 王斌, 张颖等. 油气田开发中CO2腐蚀研究进展 [J]. 西南石油学院学报, 2004, 26(2):42-45
[10]De Ward. Predictive model for CO2 corrosion engineering in wet natural gas pipelines [J]. Corrosion, 1991, 47(12): 977-985
[11]Lopez D A, Perez T, Simison S N. The influence of microstructure and chemical composition carbon and low alloy steels in CO2 corrosion-A state of the art appraisal [J]. Mater. Res., 2003,24(8): 561-575
[12] Wu S L, Cui Z D, Bai Z Q, et al. Characterization of the surface film formed from carbon dioxide corrosion on N80 steel [J]. Mater. Lett, 2004, 58(6):1076-1081
[13]Lin G F, Bai Q Z,Zhao X W, et al. Effect of temperature on scales of carbon dioxide corrosion products [J]. Acta Pet. Sin., 2004, 25(3): 101-105
[14] 林冠发, 白真权, 赵新伟等. 温度对二氧化碳腐蚀产物膜形貌特征的影响 [J]. 石油学报, 2004, 25(3):101-105
[15]Wan L P, Meng Y F, Liang F S. Carbon dioxide corrosion and its influence factors in oil/gas field exploitation [J]. Total Corros. Control, 2003, 17(2): 14-17
[16] 万里平, 孟英峰, 梁发书. 油气田开发中二氧化碳腐蚀及影响因素 [J]. 全面腐蚀控制, 2003, 17(2):14-17
[17] Mao X, Liu X, Revie R W. Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions [J]. Corrosion, 1994, 50(9):651-657
[18]Jiang X, Luo S Z, Zheng Y G, et al. Study on inhibitor properties of quaternary alkynoxymethyl amine and imidazoline for N80 seamless steel in 3%NaCl saturated by CO2 [J].J. Chin. Soc. Corros. Prot., 2004, 24(1): 10-15
[19] 蒋秀, 骆素珍, 郑玉贵等. 炔氧甲基季胺盐和咪唑啉对N80在饱和CO2的3%NaCl溶液中的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2004, 24(1):10-15
[20]Chen C F, Lu M X, Zhao G X, et al. Behavior of CO2 pitting corrosion of N80 steel [J]. J. Chin. Soc. Corros. Prot.,2003, 23(1): 21-25
[21] 陈长风, 路民旭, 赵国仙等. N80油管钢CO2 腐蚀点蚀行为 [J]. 中国腐蚀与防护学报, 2003, 23(1):21-25
[22]Chen C F, Lu M X, Zhao G X, et al. Study of CO2 corrosion scaleson N80 [J]. J. Chin. Soc. Corros. Prot., 2002, 22(3): 143-147
[23](陈长风, 路民旭, 赵国仙等. N80钢CO2 腐蚀产物膜研究 [J]. 中国腐蚀与防护学报, 2002, 22(3): 143-147)
[24]Zhang X Y, Yu G, Wang F P, et al. Influence of Cl- on corrosionbehavior of API P105 steel in the CO$_2$ saturated solution [J]. Chem.J. Chin. Univ., 1999, 20(7): 1115-1118
[25](张学元, 于刚, 王凤平等. Cl-对API P105钢在含CO2 溶液中的电化学腐蚀行为的影响 [J]. 高等学校化学学报, 1999, 20(7): 1115-1118)
[26]Chen C F, Lu M X, Zhao G X, et al.The EIS analysis of electrode reactions of CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2002, 38(7): 770-774
[27](陈长风, 路民旭, 赵国仙等. N80钢CO2 腐蚀电极过程交流阻抗分析 [J]. 金属学报, 2002, 38(7): 770-774)
[28]Zhang T S. Inhibitor [M]. Beijing: Chemical Industry Press, 2001
[29](张天胜. 缓蚀剂 [M]. 北京: 化学工业出版社, 2001)
[30]Cao C N. The Principle of the Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2004
[31](曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2004)
[32] Lerenz W J, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC method [J]. Corros. Sci, 1981, 21(9-10):647-672
[33]Ning S G, Shi M L, Liu F L. The relationship of electron density and FMO and inhibition of imidazole derivative in acidic solution [J]. J. Chin. Soc. Corros. Prot., 1990, 10(4): 383-389
[34] 宁世光, 石明理, 刘奉岭. 咪唑啉衍生物对钢在酸中的缓蚀作用与电子密度和前线轨道能量的关系 [J]. 中国腐蚀与防护学报, 1990, 10(4):383-389
[35]Jiang D C, Liu F G. Inhibition and thermodyanmics of new triazole derivative in 1 mol/L HCl solution [J]. J. Chin.Soc. Corros. Prot., 2008, 28(4): 231-233
[36](姜德成, 刘福国. 新型三唑衍生物缓蚀剂在HCl中的缓蚀性能 [J]. 中国腐蚀与防护报. 2008, 28(4): 231-233)
[37]Wang J. The Study of Mechanism and Anodic Desorption of Organic Inhibitors [D]. Shenyang: Institute of Corrosion and Protection of Metals, Academia Sinica, 1990
[38](王佳. 有机缓蚀剂作用机理和脱附行为的研究 [D]. 沈阳: 中国科学院金属腐蚀与防护研究所, 1990)
[39] Kendig M, Mansfeld F, Tsai S. Determination of the long term corrosion behavior of coated steel with ac. impedance measurements [J]. Corros. Sci, 1983, 23(4):317-329
[40]Liu F G, Du M, Zhang J, et al. Inhibition mechanism of imidazoline derivative inhibitor for Q235 steel in saltwater saturated with CO2 [J]. Acta Phys. Chim. Sin., 2008, 24(1): 138-142
[41] 刘福国, 杜敏, 张静等. 咪唑啉衍生物缓蚀剂对碳钢在CO2盐水中的缓蚀机理 [J]. 物理化学学报, 2008, 24(1):138-142
[42]Cao C N, Zhang J Q. An Introduction toElectrochemical Impedance Spectroscopy [M]. Beijing: Science Press,2002, 173
[43](曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002, 173)
[44]Liu F G, Du M. Effect of new type compound inhibitor on inhibition behavior of steel G105 in NaCl solution. [J]. Acta Metall. Sin., 2007, 43(9): 989-993
[45] 刘福国, 杜敏. 新型复配缓蚀剂对G105钢在NaCl溶液中缓蚀行为的影响 [J]. 金属学报, 2007, 43(9):989-993
[46]Wang J, Cao C N. Anodic desorption of inhibitors.Ⅱ. Effects of inhibitor desorption on electrode impedance [J]. J. Chin. Corros. Prot., 1995, 15(4): 247-253
[47](王佳, 曹楚南. 缓蚀剂阳极脱附现象的研究Ⅱ. 缓蚀剂阳极脱附对电极阻抗的影响 [J]. 中国腐蚀与防护学报, 1995, 15(4): 247-253)

[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[3] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[7] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[8] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[10] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[11] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[12] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[13] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[14] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[15] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
No Suggested Reading articles found!