Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (1): 11-15    DOI:
技术报告 Current Issue | Archive | Adv Search |
FRETTING CORROSION BEHAVIOR OF 304 STAINLESS STEEL IN Na2SO4 SOLUTION
LI Jiwu; WANG Dianliang
School of Mechanical and Electrical Engineering; Jiaxing University; Jiaxing 314001
Download:  PDF(774KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to clarify the fretting wear behavior of 304 stainless steel in Na2SO4 solution, the electrochemical approach is applied in this work. The potential pulse method is used to evaluate the relationship between the fresh surface produced by fretting wear and lost surface. The results shows as follows: wear volume is increased with the increase of potential; the fresh surface area is approximately one tenth of the wear scar area, and fretting corrosion wear is caused by electrochemical element.

Key words:  304 stainless      Na2SO4 solution      potential pulse method      fresh surface      fretting corrosion     
Received:  04 August 2008     
ZTFLH: 

TG15

 
  TH117.3

 
Corresponding Authors:  LI Jiwu     E-mail:  ljw6708@mail.zjxu.edu.cn

Cite this article: 

LI Jiwu; WANG Dianliang. FRETTING CORROSION BEHAVIOR OF 304 STAINLESS STEEL IN Na2SO4 SOLUTION. J Chin Soc Corr Pro, 2010, 30(1): 11-15.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I1/11

[1] Iwabuchi A, Lee J W,  Uchidate M. Synergistic effect of fretting wear and sliding wear of Co-alloy and Ti-alloy in Hanks'solution [J]. Wear. 2007, 263: 492-500
[2] Li J W, Iwabuchi T A, Shimiz. A Study on the fretting wear of SUS304 steel in Na2SO4 solution [J]. Jpn. Soc. Tribol., 2005, 50(2): 180-186
[3] Si S H. Effect of laser power on microstructures and wear properties of WCP/Ni metal ceramics coating [J]. J. Chin. Soc. Corros. Prot.,2004, 24(3): 183-187
    (斯松华. 激光功率对WCp /Ni基金属陶瓷涂层的组织与磨损性能的影响 [J]. 中国腐蚀与防护学报,2004, 24(3): 183-187)
[4] Weng Y J, Li X Y. A study on synergism between erosion and corrosion of carbon steel in sandy oil field brines [J]. J. Chin.Soc. Corros. Prot., 2000, 20(5): 281-286
    (翁永基, 李相怡. 碳钢在含沙油田水中腐蚀-磨损交互作用研究 [J].中国腐蚀与防护学报,2000, 20(5): 281-286)
[5] Zhou Z R, Leo Vincent. Fretting Wear [M]. Beijing: Science Press, 2002
    (周仲荣, Leo Vincent. 微动磨损 [M]. 北京: 科学出版社, 2002)
[6] Ren P D, Chen G X, Zhou Z R. Fretting wear behavior of GCr15 steel under lubrication of various aqueous mediums [J].  Tribology,2003,23(04): 331-33
    (任平弟, 陈光雄, 周仲荣. 不同水介质润滑下GCr15钢的微动磨损特性 [J]. 摩擦学学报,2003,23(04): 331-335)
[7] Yan J Z, Wu Y S, Li J Q. Fretting corrosion wear transferability of 316L stainless steel [J]. J. Chin. Soc.Corros. Prot., 2001, 21(2): 88-94
    (闫建中, 吴荫顺, 李久青. 316L不锈钢微动磨蚀过程力学化学交互作用的迁移行为 [J]. 中国腐蚀与防护学报,2001, 21(2): 88-94)
[8] Yan J Z, Wu Y S, Zhang L. The effect of  localized corrosion on fretting attack of 316L stainless steel in 0.9\% NaCl solution [J]. J. Chin. Soc. Corros.Prot., 2000, 20(4): 237-242
    (闫建中, 吴荫顺, 张琳. 316L不锈钢在NaCl溶液微动过程中局部腐蚀作用研究 [J]. 中国腐蚀与防护学报,2000, 20(4): 237-242)
[9] Yan J Z, Wu Y S, Li J Q. Repassivation behavior of 316L stainless steel in fretting wear and corrosion process [J]. J. Chin. Soc. Corros. Prot., 2000, 20(6):355-360
    (闫建中, 吴荫顺, 李久青. 316L不锈钢微动磨蚀过程表面钝化膜自修复行为研究 [J]. 中国腐蚀与防护学报,2000, 20(6): 355-360)
[10] Tian X L, Lin Y Z, Liu J J.Electrochemical behavior in erosion-corrosion of carbon steel in liquid-solid double-phase flow loop [J]. J. Chin. Soc. Corros.Prot., 2004, 24(1): 48-51
     (田兴玲, 林玉珍, 刘景军. 碳钢在液/固双相管流中磨损腐蚀的电化学行为 [J]. 中国腐蚀与防护学报,2000, 20(6): 355-360)
[11] Li J W. Fretting corrosion property of Zr-4 alloy in Na2SO4  solution [J]. Tribology, 2007,27(5): 406-410
     (李积武. Zr-4合金在Na2SO4溶液中的微动腐蚀特性 [J]. 摩擦学学报, 2007,27(5): 406-410)
[12] Kim D G, Lee Y Z. Experimental investigation on sliding and fretting wear of steam generator tube materials [J]. Wear, 2001,250-251: 637-680
[13] Hou B, Huang W J, Chen B S, et al. Fretting wear mechanisms of AZ91D magnesium alloy in slip regime [J].Tribology, 2004,24(4): 351-354
     (侯滨,黄伟九,陈波水等. AZ91D镁合金滑移区域微动磨损机理研究 [J]. 摩擦学学报, 2004,24(4): 351-354)
[14] Luo Q, Qiu S Y. Yin K J, et al. Influence of Cr6+ on corrosion behavior of type 321 stainless steel in uranyl nitrate solution [J]. Corros.Prot., 2008, 29(3): 113-115
     (罗强, 邱绍宇, 尹开锯等. Cr6+对321不锈钢在硝酸铀酰溶液中的腐蚀行为影响 [J]. 腐蚀与防护,2008, 29(3): 113-115)
[15] Kim T H. Fretting wear characteristics of zircaloy-4 tube [J]. Wear, 1998, 219(1): 3-7
[16] Attia M H, Magel E. Experimental investigation of long term fretting wear of multi-span steam generator tube withU-bend sections [J]. Wear, 1999, 225: 563-574
[17] Iwabuchi A,Sonoda T,Yashiro H,et al. Application of potential pulse method to the corrosion behavior of the fresh surface formed by scratching and sliding in corrosive wear [J]. Wear,1999, 226: 181-189

[1] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[3] Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[4] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[5] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[6] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[7] Yingjun AI,Nan DU,Qing ZHAO,Shixin HUANG,Liqiang WANG,Qingjie WEN. Effect of Temperature on Initiation of Metastable Pits and Geometric Features of Stable Pits for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[8] Yurong FANG,Chaoyang FU. Corrosion and Corrosion Inhibition of 304 Stainless Steel in Acidic FeCl3 Solution with Applied Inhibitor K2Cr2O7 and Ultrasonic Vibration[J]. 中国腐蚀与防护学报, 2015, 35(4): 305-310.
[9] YE Chao, DU Nan, TIAN Wenming, ZHAO Qing, ZHU Li. Effect of pH on Pitting Corrosion Process of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[10] XU Hongmei, LIU Wei, CAO Lixin, SU Ge, GAO Rongjie. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[11] TIAN Wenming, DU Nan, ZHAO Qing. ELECTRONIC SPECKLE PATTERN INTERFEROMETRY MEASUREMENT OF 304 STAINLESS STEEL PITTING POTENTIAL[J]. 中国腐蚀与防护学报, 2012, 32(5): 431-436.
[12] LI Ji, ZHAO Lin, LI Bowen,ZHENG Liqun, HAN En-Hou. ELECTROCHEMICAL NOISE ANALYSIS OF 304 STAINLESS STEEL PITTING CORROSION IN FERRIC CHLORIDE SOLUTION[J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240.
[13] WANG Hongfen, WANG Zhiqi, HONG Haixia, CHEN Shougang,YIN Yansheng. CORROSION RESISTANCE BEHAVIOR OF CERIUM-DOPED TiO2 FILM IN THE PRESENCE OF MARINE BACTERIUM SULFATE-REDUCING BACTERIA[J]. 中国腐蚀与防护学报, 2010, 30(6): 481-486.
[14] HUANG Wenjing; HUANG Hualiang; QIU Yubing; CHEN Zhenyu; GUO Xingpeng. EFFECT OF SIZE ON CORROSION BEHAVIOR OF MICRO-ELECTRODES[J]. 中国腐蚀与防护学报, 2010, 30(2): 141-144.
[15] . SEMICONDUCTING BEHAVIOR OF 304 STAINLESS STEEL IN ELECTROLYTE SOLUTION[J]. 中国腐蚀与防护学报, 2008, 28(6期): 341-344.
No Suggested Reading articles found!