Please wait a minute...
J Chin Soc Corr Pro  1995, Vol. 15 Issue (2): 81-86    DOI:
Current Issue | Archive | Adv Search |
FRACTURE MECHANISM OF MILD STEEL IN HYDROCHLORIC ACID CONTAINING Fe~(3+)
Cheng Yufeng;Du Yuanlong(Corrosion Science Laboratory;Institute of Corrosion and Protection of Metals;Chinese Academy of Sciences)
Download:  PDF(1188KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A new kind of electrochemical sensor was used for measuring the permeation rate of atomic hydrogen(H permeation current) through the sensor in 5% HCl solution containing Fe(3+) at different concentrations.The susceptibility and mechanism of brittle fracture of A3 mild steel were studied by slow strain rate tensiletechnique (SSRT), scanning electron microscope (SEM) and cathodic/anodic polarization measurements.The embrittlement susceptibility of the steel in the solution was expressed as the index of embrittlement(F%).The results showed that the fracture mechanism of the steel in 5% HCl aqueous solution containingFe(3+)would be changed from hydrogen induced cracking (HIC) to anodic dissolution in nature with theimcrease of the concentration of Fe(3+) in the solution.
Key words:  Fracture      Mechanism      Hydrogen induced cracking (HIC)      Anodic dissolution      Steel      Hydrochloric acid      Ferric ion     
Received:  25 April 1995     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

Cheng Yufeng;Du Yuanlong(Corrosion Science Laboratory;Institute of Corrosion and Protection of Metals;Chinese Academy of Sciences). FRACTURE MECHANISM OF MILD STEEL IN HYDROCHLORIC ACID CONTAINING Fe~(3+). J Chin Soc Corr Pro, 1995, 15(2): 81-86.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1995/V15/I2/81

1DuY.In:Proceedingsof12thInterationCorrosionCongress,Houston,U.S.A,1993,23832BastienP,VeronH,RoquesC.RevuedeMetallurgie,Memoires,1958,55:3103左景伊.应力腐蚀破裂,西安:西安交通大学出版社,1985.4RajaKS;RaoKPCorrosion,1992,48(8):6345NajjarD,etalIn:Proceedingsof12thInternationalCorrosionCongress,Houston,U.SA,1993;1613.6HardwickDA;et.al.MetallurgicalTransartions,1983;14A:25177HolroydNJH,HardieD.CorrosionScience,1981,21:129
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[5] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[6] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[8] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[9] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[10] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[11] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[12] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[13] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
No Suggested Reading articles found!