Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 1022-1028    DOI: 10.11902/1005.4537.2023.277
Current Issue | Archive | Adv Search |
Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature
ZHU Huiwen1, ZHENG Li1, ZHANG Hao2, YU Baoyi1(), CUI Zhibo1
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2. Dalian Bingshan Metal Technology Co., Ltd., Dalian 116600, China
Cite this article: 

ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1022-1028.

Download:  HTML  PDF(12735KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cast WE43 Mg-alloy with addition of 0.04%Be (WE43-0.04Be) was prepared by electromagnetic stirring melting and casting process, and then subjected to solid solution treatment at 525oC for 10 h plus aging treatment at 225oC for 6, 10 and 14 h, respectively. Afterwards, the microstructure, mechanical property, oxidation behavior and flame-retardant property were assessed for the prepared alloys. The results showed that the WE43-0.04Be alloy aged for 10 h possessed the best comprehensive performance, namely its tensile strength, yield strength and elongation were 253 MPa, 209 MPa and 8.3% respectively, which could meet the mechanical property requirements for high-speed railway structural parts. The WE43-0.04Be alloy will not burn in air when heated up to 850 o C in a furnace. A mixed oxide scale composed of compounds of Mg and alloying elements was generated on the surface of the alloy, thus inhibiting the inwards migration of aggressive species approching onto the interface oxide scale/WE43-0.04Be alloy.

Key words:  WE43 Mg-alloy      high-temperature oxidation      oxide film      mechanical property      microstructure     
Received:  05 September 2023      32134.14.1005.4537.2023.277
ZTFLH:  TG174  
Fund: China State Railway Group Co., Ltd. Science and Technology Research and Development Plan(P2020J024)
Corresponding Authors:  YU Baoyi, E-mail: baoyiy@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.277     OR     https://www.jcscp.org/EN/Y2024/V44/I4/1022

Fig.1  2D drawing of tensile specimen (mm)
Fig.2  Microstructure of electromagnetically stirred WE43-0.04Be alloy: (a, b) microstructure, (c) distribution of grain size, (d) XRD pattern
Fig.3  Microstructures of WE43-0.04Be alloy after aging treatment: (a) 225oC × 6 h, (b) 225oC × 10 h, (c) 225oC × 14 h
Fig.4  XRD patterns of WE43-0.04Be alloy after T6 treatment
Fig.5  Mechanical properties of WE43-0.04Be alloy after aging treatment
Fig.6  Fracture morphologies of WE43-0.04Be alloy: (a) as-cast, (b) 225oC × 6 h, (c) 225oC × 10 h, (d) 225oC × 14 h
Fig.7  Macroscopic surface of WE43 (a) and WE43-0.04Be alloy (b) oxidized at high temperature
Fig.8  Cross-sectional morphologies and EDS elemental mappings of high-temperature oxidized of WE43 Mg-alloy (a) and WE43-0.04Be alloy (b)
[1] Song J F, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. J. Magnes. Alloy., 2022, 10: 863
[2] Czerwinski F. Controlling the ignition and flammability of magnesium for aerospace applications [J]. Corros. Sci., 2014, 86: 1
[3] Luo C, Wu X, Song H Q, et al. Analysis of application requirements and research directions of magnesium alloys for aircraft engines serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 787
骆 晨, 吴 雄, 宋汉强 等. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析 [J]. 中国腐蚀与防护学报, 2023, 43: 787
[4] Shao Y H, Wang J L, Zhang W, et al. High temperature oxidation behavior of a heat resistant magnesium alloy Mg-14Gd-2.3Zn-Zr [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 73
邵银华, 王金龙, 张 伟 等. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 73
doi: 10.11902/1005.4537.2020.265
[5] Liu Y, Liu S M, Yu L P, et al. Summary on corrosion behavior and micro-arc oxidation for magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 99
刘 胤, 刘时美, 于鲁萍 等. 镁合金的腐蚀与微弧氧化膜层研究 [J]. 中国腐蚀与防护学报, 2015, 35: 99
[6] Wang Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
[7] Li D J, Cheng C L, Le Q C, et al. Research progress on oxidation mechanism of magnesium alloys [J]. Mater. Rep., 2023, 37(1): 163
李多娇, 程春龙, 乐启炽 等. 镁合金氧化机理研究进展 [J]. 材料导报, 2023, 37(1): 163
[8] Zeng X Q. Study on ignition proof magnesium alloy and its ignition proof principles [D]. Shanghai: Shanghai Jiao Tong University, 2000
曾小勤. 阻燃镁合金及其阻燃机理研究 [D]. 上海: 上海交通大学, 2000
[9] Zeng X Q, Wang Q D, Lü Y H, et al. Behavior of surface oxidation on molten Mg-9Al-0.5Zn-0.3Be alloy [J]. Mater. Sci. Eng., 2001, 301A: 154
[10] Inoue S I, Yamasaki M, Kawamura Y. Oxidation behavior and incombustibility of molten Mg-Zn-Y alloys with Ca and Be addition [J]. Corros. Sci., 2019, 149: 133
[11] Tan Q Y, Mo N, Jiang B, et al. Oxidation resistance of Mg-9Al-1Zn alloys micro-alloyed with Be [J]. Scr. Mater., 2016, 115: 38
[12] Liu P P, Li Y, Zheng L, et al. Research progress in magnesium alloy alloying flame retardancy [J]. Met. Form., 2021, (6): 104
刘平平, 李 妍, 郑 丽 等. 镁合金合金化阻燃研究进展 [J]. 金属加工(热加工), 2021, (6): 104
[13] Agnew S R, Mulay R P, Polesak III F J, et al. In situ neutron diffraction and polycrystal plasticity modeling of a Mg-Y-Nd-Zr alloy: Effects of precipitation on individual deformation mechanisms [J]. Acta Mater., 2013, 61: 3769
[14] Du B N, Hu Z Y, Sheng L Y, et al. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60: 44
doi: 10.1016/j.jmst.2020.05.021
[15] Liang Y J, Che Y C. Handbook of Inorganic Thermodynamics Data [M]. Shenyang: Northeastern University Press, 1993
梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993
[16] Tan Q Y, Mo N, Lin C L, et al. Improved oxidation resistance of Mg-9Al-1Zn alloy microalloyed with 60 wt ppm Be attributed to the formation of a more protective (Mg,Be)O surface oxide [J]. Corros. Sci., 2018, 132: 272
[17] Song X, Wang Z W, Zeng R C. Magnesium alloys: Composition, microstructure and ignition resistance [J]. Chin. J. Nonferrous Met., 2021, 31: 598
宋 祥, 王忠卫, 曾荣昌. 镁合金: 成分、组织与阻燃 [J]. 中国有色金属学报, 2021, 31: 598
[18] Zhou Y C, Chen J X, Wang J Y. Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1 - x Si x C2 solid solutions [J]. Acta Mater., 2006, 54: 1317
[1] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[2] HE Yajie, CHEN Lingzhi, RUAN Zhangshun, FU Xiaogang, JI Cheng, LONG Bin. Progress of Small Punch Test Technique and Its Application in Detecting Embrittlement Effect of Molten Lead-bismuth on Metallic Materials[J]. 中国腐蚀与防护学报, 2024, 44(3): 567-575.
[3] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[4] YUAN Xiaohu, LI Dingjun, WANG Tianjian, GUO Xianping, ZHANG Naiqiang, ZHU Zhongliang. Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[5] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[6] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[7] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[8] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[9] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[10] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[11] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[12] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[13] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[14] SHANG Jin, GU Yan, ZHAO Jing, WANG Zhe, ZHANG Bo, ZHAO Tongjun, CHEN Zehao, WANG Jinlong. Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[15] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
No Suggested Reading articles found!