Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 1029-1037    DOI: 10.11902/1005.4537.2023.271
Current Issue | Archive | Adv Search |
Effect of Fatigue Damage Under Stress-controlled Mode on the Corrosion Behavior of AA7075-T651 Al-alloy
WENG Shuo1,2,3(), MENG Chao1, ZHU Jiangfeng4, WANG Ai1, CHANG Xin1, KANG Yun1, HE Xiaotian1, ZHAO Lihui1,2,3
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. Key Laboratory of Strength and Reliability Evaluation of Auto Mechanical Components for Mechanical Industry, Shanghai 200093, China
3. Shanghai Public Technology Platform for Reliability Evaluation of New Energy Vehicles, Shanghai 200093, China
4. Suzhou Sushi Testing Group Co., Ltd., Suzhou 215129, China
Cite this article: 

WENG Shuo, MENG Chao, ZHU Jiangfeng, WANG Ai, CHANG Xin, KANG Yun, HE Xiaotian, ZHAO Lihui. Effect of Fatigue Damage Under Stress-controlled Mode on the Corrosion Behavior of AA7075-T651 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1029-1037.

Download:  HTML  PDF(6705KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of fatigue damage under stress-controlled mode on mechanical properties and corrosion behavior of AA7075-T651 Al-alloy was systematically investigated through the interrupted fatigue test, tensile test, electrochemical measurement and microstructure observation. The results show that the acquired fatigue damages can not only improve the comprehensive mechanical properties of AA7075 Al-alloy, but also increase its corrosion resistance. It follows that the change of microstructure (the increase of dislocation density and secondary phase precipitation) before and after being experienced fatigue damages is the fundamental reason that affects the mechanical properties and corrosion behavior of AA7075 Al-alloy.

Key words:  stress-controlled mode      fatigue damage      corrosive behavior      AA7075-T651Al-alloy     
Received:  01 September 2023      32134.14.1005.4537.2023.271
ZTFLH:  TG156  
Fund: National Natural Science Foundation of China(52005336)
Corresponding Authors:  WENG Shuo,E-mail:wengshuo@usst.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.271     OR     https://www.jcscp.org/EN/Y2024/V44/I4/1029

Fig.1  Schematic diagram of sample size of 7075-T651 Al-alloy
Fig.2  S-N curve of AA7075-T651 Al-alloy with stress ratio of -0.1
Fig.3  Tensile curves of fatigue damage samples with different given cycles (a) and local enlarged diagram of Fig.3a (b)
Fig.4  Changes of mechanical properties of fatigue damaged specimens with different given cycles: (a) tensile strength, (b) yield strength, (c) elastic modulus
Fig.5  OCP of fatigue damaged samples with different given cycles: (a) front of the sample, (b) local enlarged of Fig.5a, (c) side of the sample, (d) local enlarged of Fig.5c
SampleOCP/V
FrontSide
As-received sample-0.777-0.777
Pre-fatigued 1/10Nf sample-0.772-0.773
Pre-fatigued 1/4Nf sample-0.774-0.771
Pre-fatigued 1/2Nf sample-0.771-0.765
Table 1  Average OCP of fatigue damaged samples from 400 s to 1800 s with different given cycles
Fig.6  Nyquist (a, b) and Bode (c, d) plots of fatigue damage samples with different given cycles: (a, c) front of the sample, (b, d) side of the sample
SampleRct / Ω·cm2Rs / Ω·cm2
FrontSideFrontSide
As-received sample326030956.965.18
Pre-fatigued 1/10Nf sample390132187.314.68
Pre-fatigued 1/4Nf sample460236857.464.71
Pre-fatigued 1/2Nf sample567142017.264.90
Table 2  Relevant parameters of the fitting circuit for fatigue damage samples with different given cycles
Fig.7  Polarization curves of fatigue damage samples with different given cycles: (a) front of the sample, (b) side of the sample
Fig.8  Corrosion potential (a) and corrosion current density (b) diagram of fatigue damaged specimens with different given cycles
Fig.9  Microstructure of the original sample (a, b) and the pre-fatigued 1/4 sample (c, d) of AA7075-T651 aluminum alloy: (a, c) front of the sample, (b, d) side of the sample
Fig.10  Dislocation density morphologies of the original sample (a, b) and pre-fatigued 1/4Nf sample (c, d)
[1] Chen W B, Niu R Z, Pan X, et al. Applicaion of aluminum alloy in automobile lightweight and examples of heavy truck lightweight [J]. Automob. Appl. Technol., 2020, 45(16): 49
陈文博, 牛润泽, 潘星 等. 铝合金在汽车轻量化中的应用及重卡轻量化实例 [J]. 汽车实用技术, 2020, 45(16): 49
[2] Zhou X, Zhang Z T, Gao Y, et al. Experimental study on fatigue damage of aluminum alloy stamping parts [J]. J. Mech. Eng., 2023, 59(10): 117
doi: 10.3901/JME.2023.10.117
周 迅, 张振涛, 高 云 等. 铝合金冲压件疲劳损伤规律的试验研究 [J]. 机械工程学报, 2023, 59(10): 117
[3] Chen Y Q, Zhang H, Zhang W T, et al. Research progress on influence of service environment on fatigue damage behavior of high strength aluminum alloy [J]. Mater. Mech. Eng., 2020, 44(1): 1
doi: 10.11973/jxgccl202001001
陈宇强, 张 浩, 张文涛 等. 服役环境对高强铝合金疲劳损伤行为影响的研究进展 [J]. 机械工程材料, 2020, 44(1): 1
doi: 10.11973/jxgccl202001001
[4] Weng S, Yu J, Zhao L H, et al. Effect of corrosion damage on fatigue behavior of AA7075-T651 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 486
翁 硕, 俞 俊, 赵礼辉 等. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 486
[5] Zhang S, Zhang T, He Y T, et al. Effect of coastal atmospheric corrosion on fatigue properties of 2024-T4 aluminum alloy structures [J]. J. Alloy. Compd., 2019, 802: 511
[6] Calderon-Uriszar-Aldaca I, Briz E, Biezma M V, et al. A plain linear rule for fatigue analysis under natural loading considering the coupled fatigue and corrosion effect [J]. Int. J. Fatigue, 2019, 122: 141
[7] Pao P S, Gill S J, Feng C R. On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy [J]. Scr. Mater., 2000, 43: 391
[8] Zhou H L. An investigation of corrosion fatigue performance of aluminum riser materials in simulated seawater [D]. Changchun: Jilin University, 2018
周海龙. 海洋钻井铝合金隔水管材料在模拟海水中的腐蚀疲劳性能研究 [D]. 长春: 吉林大学, 2018
[9] Zhang Y H, Lü G Z, Chen Y L. Predicting fatigue life from pre-corroded LY12-CZ aluminium test [J]. Acta Aeronaut. Astronaut. Sin., 2005, 26: 779
张有宏, 吕国志, 陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究 [J]. 航空学报, 2005, 26: 779
[10] Chen J, Diao B, He J J, et al. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion [J]. Int. J. Fatigue, 2018, 110: 153
[11] Co N E C, Burns J T. Effects of macro-scale corrosion damage feature on fatigue crack initiation and fatigue behavior [J]. Int. J. Fatigue, 2017, 103: 234
[12] Zerbst U, Madia M, Klinger C, et al. Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions [J]. Eng. Failure Anal., 2019, 98: 228
[13] Rodriguez R I, Jordon J B, Allison P G, et al. Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys [J]. Mater. Sci. Eng., 2019, 742A: 255
[14] Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
doi: 10.1126/science.aav7086 pmid: 30819960
[15] Huang J N, Wang X. Effect of tensile stress on corrosion behavior of 7050 aluminum alloy [J]. Ordnance Mater. Sci. Eng., 2020, 43(6): 69
黄建娜, 王 璇. 拉应力对7050铝合金腐蚀行为的影响 [J]. 兵器材料科学与工程, 2020, 43(6): 69
[16] Li N, Dong C F, Man C, et al. Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy [J]. Corros. Sci., 2021, 180: 109174
[17] Weng S, Huang Y H, Si X F, et al. SCC fracture location shifting affected by stress-controlled fatigue damage of NiCrMoV steel welded joints [J]. J. Mater. Res. Technol., 2022, 21: 1534
[18] Huang Y H, Si X F, Weng S, et al. Effect of fatigue damage on stress corrosion cracking sensitivity of nuclear steam turbine welded joint [J]. Trans. China Weld. Inst., 2020, 41(4): 12
黄毓晖, 司晓法, 翁 硕 等. 疲劳损伤对核电汽轮机焊接转子接头应力腐蚀开裂敏感性的影响 [J]. 焊接学报, 2020, 41(4): 12
[19] Weng S, Huang Y H, Xuan F Z, et al. Enhanced galvanic corrosion phenomenon in the welded joint of NiCrMoV steel by low-cycle fatigue behavior [J]. J. Electrochem. Soc., 2019, 166: C270
doi: 10.1149/2.0411912jes
[20] Weng S, Huang Y H, Zhu M L, et al. Microstructural evolution along the NiCrMoV steel welded joints induced by low-cycle fatigue damage [J]. Metals, 2021, 11: 811
[21] Chen X L, Mørtsell E A, Sunde J K, et al. Enhanced mechanical properties in 6082 aluminum alloy processed by cyclic deformation [J]. Metals, 2021, 11: 1735
[1] WENG Shuo, YU Jun, ZHAO Lihui, FENG Jinzhi, ZHENG Songlin. Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
No Suggested Reading articles found!