Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 1011-1021    DOI: 10.11902/1005.4537.2024.041
Current Issue | Archive | Adv Search |
Effect of Aluminum Content on Corrosion Behavior of Ni-Al Alloys in Dilute Sulfuric Acid Solution
DU Guang1, LU Guoqiang2, DENG Longhui1, JIANG Jianing1, CAO Xueqiang1()
1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2. AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang 110043, China
Cite this article: 

DU Guang, LU Guoqiang, DENG Longhui, JIANG Jianing, CAO Xueqiang. Effect of Aluminum Content on Corrosion Behavior of Ni-Al Alloys in Dilute Sulfuric Acid Solution. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1011-1021.

Download:  HTML  PDF(19540KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based high-temperature alloys (NiCrAlY) are commonly used in the hot sections of aerospace engines. Hot section components such as combustion chambers, guide vanes, and turbine blades require thermal barrier coatings (TBCs) for protection. TBCs consist of an oxidation-resistant metal bond coat (BC) and a ceramic top coat (TC) that provides thermal insulation. The BC material is also NiCrAlY alloy, with Al and Cr content higher than the substrate Ni-based high-temperature alloys, leading to a 53 mV lower corrosion potential for BC compared to the substrate, therefore, resulting in galvanic couple with the BC. Herein, the influence of different Al contents in NiAl alloys on their corrosion behavior in dilute H2SO4, simulating the corrosive environment was studied. The result reveals that Ni95Al5 exhibits the highest corrosion potential and the lowest corrosion current density, while Ni75Al25 has a lower corrosion potential. The research demonstrates that a high Al content in the BC is the primary cause of corrosion in conditions of natural environment.

Key words:  NiAl alloy      dilute sulfuric acid      electrochemical behavior      corrosion product     
Received:  30 January 2024      32134.14.1005.4537.2024.041
ZTFLH:  O646.6  
Fund: National Natural Science Foundation of China(92060201)
Corresponding Authors:  CAO Xueqiang, E-mail: xcao@whut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.041     OR     https://www.jcscp.org/EN/Y2024/V44/I4/1011

Fig.1  SEM backscattered electron images of four alloys prepared by vacuum melting: (a, b) Ni75Al25, (c, d) Ni85Al15, (e) Ni80Al20, (f) Ni95Al5
ElementACE1E2F
Al28.4315.3614.3925.196.09
Ni71.5784.6485.6174.8193.91
Table 1  Chemical compositions of the regions marked in Fig.1
Fig.2  XRD patterns of four Ni-Al alloys prepared by vacuum melting (a) and local enlargement patterns of Fig.2a (b)
Fig.3  Potentiodynamic polarization curves of four Ni-Al alloys
Sample

Ecorr

mV

Icorr

µA·cm-2

ba

mV·dec-1

bc

mV·dec-1

Ni75Al25-0.21111.8838.65128.96
Ni80Al20-0.22337.347.79126.09
Ni85Al15-0.22413.7247.4142.41
Ni95Al5-0.1729.2535.57139.12
Table 2  Fitting parameters of polarization curves of four Ni-Al alloys
Fig.4  Surface morphologies of four Ni-Al alloys after polarization test: (a, b) Ni75Al25, (c, d) Ni80Al20, (e, f) Ni85Al15, (g, h) Ni95Al5
ElementABCDEF
O7.967.348.2514.8112.5213.28
Al23.3324.2713.8020.0010.265.56
S0.680.550.360.821.080.86
Ni68.0367.8477.5964.3676.1480.30
Table 3  Chemical compositions of different points marked in Fig.4
Fig.5  Surface morphologies of four Ni-Al alloys after linear polarization resistance test for 48 h: (a, b) Ni75Al25, (c, d) Ni80Al20, (e, f) Ni85Al15, (g, h) Ni95Al5
ElementABCDEFG
Ni70.1779.4869.3578.1066.7191.430.98
Al25.1513.8625.3913.5111.755.4131.12
O4.686.665.278.3921.553.1667.90
Table 4  Average chemical composition of different regions in Fig.5
Fig.6  XPS spectra of four Ni-Al alloys after immersion in 1 mol/L H2SO4 solution for 48 h: (a) Ni 2p, (b) Al 2p, (c) O 1s, (d) S 2p
Fig.7  Nyquist (a-d) and Bode (e-h) plots of Ni75Al25 (a, e), Ni80Al20 (b, f), Ni85Al15 (c, g) and Ni95Al5 (d, h) after corrosion for different time
Fig.8  Equivalent circuit model used for fitting EIS of Ni75Al25 and Ni80Al20 (a), and Ni85Al15 and Ni95Al5 (b)
Fig.9  Eocp (a) and Icorr (b) values of four Ni-Al alloys as a function of immersed time
[1] Zhao Y S, Zhang M, Dai J W, et al. Research progress of thermal barrier coatings for aeroengine turbine blades [J]. Mater. Rep., 2023, 37(6): 21040168
赵云松, 张 迈, 戴建伟 等. 航空发动机涡轮叶片热障涂层研究进展 [J]. 材料导报, 2023, 37(6): 21040168
[2] Darolia R. NiAl alloys for high-temperature structural applications [J]. JOM, 1991, 43: 44
[3] Stoloff N S, Liu C T, Deevi S C. Emerging applications of intermetallics [J]. Intermetallics, 2000, 8: 1313
[4] Rajendran R. Gas turbine coatings-An overview [J]. Eng. Failure Anal., 2012, 26: 355
[5] Chen S D. Research progress on microstructure and preparation methods for MCrAlY bond coats [J]. Mater. Rep., 2019, 33(15): 2582
陈守东. MCrAlY粘结层的微观组织及制备方法研究进展 [J]. 材料导报, 2019, 33(15): 2582
[6] Chang Z D, Zhang J, Mou R D, et al. Phase structure and properties of a NiCrAlYSi bond coating alloy [J]. Vacuum, 2022, 59(4): 41
常振东, 张 婧, 牟仁德 等. NiCrAlYSi粘结层合金相结构与性能研究 [J]. 真空, 2022, 59(4): 41
[7] Cao Q, Yuan J Y, Wang J S, et al. Formation mechanism of corrosion spots on thermal barrier coatings [J]. Therm. Spray Technol., 2019, 11(1): 9
曹 沁, 袁洁燕, 王进双 等. 热障涂层表面腐蚀斑点的形成机理研究 [J]. 热喷涂技术, 2019, 11(1): 9
[8] Shen L, Xue J J. Development path choice and strategy framework of China's energy security [J]. China Popul. Resour. Environ., 2011, 21(10): 49
沈 镭, 薛静静. 中国能源安全的路径选择与战略框架 [J]. 中国人口·资源与环境, 2011, 21(10): 49
[9] Ding N. Analysis of harmful elements causing air pollution in coal [J]. China Stand., 2018, (18): 163
丁 宁. 煤炭中造成大气污染有害元素的分析 [J]. 中国标准化, 2018, (18): 163
[10] Chen X, Shan X R, Shi Z J, et al. Analysis of the spatio-temporal changes in acid rain and their causes in China (1998–2018) [J]. J. Resour. Ecol., 2021, 12: 593
[11] Zhang D, Xu R G, Zhao Y F, et al. Interannual variation characteristics of acid rain from 2006-2021 in China [J]. Environ. Pollut. Control, 2023, 45: 849
张 舵, 许瑞广, 赵一飞 等. 2006-2021年中国酸雨年际变化特征分析 [J]. 环境污染与防治, 2023, 45: 849
[12] Wen J, Cui H Z, Wei N, et al. Effect of phase composition and microstructure on the corrosion resistance of Ni-Al intermetallic compounds [J]. J. Alloy. Compd., 2017, 695: 2424
[13] Sefer B, Virtanen S. Electrochemical and corrosion study of as-cast Ni x Aly intermetallic alloys: Influence of alloy composition and electrolyte pH [J]. Corros. Sci., 2019, 154: 287
[14] Porcayo-Calderon J, Rodriguez-Diaz R A, Porcayo-Palafox E, et al. Effect of Cu addition on the electrochemical corrosion performance of Ni3Al in 1.0 M H2SO4 [J]. Adv. Mater. Sci. Eng., 2015, 2015: 209286
[15] Padilla E H, Flores A M, Ramírez C A, et al. Electrochemical corrosion characterization of nickel aluminides in acid rain [J]. Matéria (Rio de Janeiro), 2018, 23: 11998
[16] Huang W, Chang Y A. A thermodynamic analysis of the Ni-Al system [J]. Intermetallics, 1998, 6: 487
[17] Krasnowski M, Antolak A, Kulik T. Nanocrystalline Ni3Al alloy produced by mechanical alloying of nickel aluminides and hot-pressing consolidation [J]. J. Alloy. Compd., 2007, 434/435: 344
[18] Matsuura K, Kitamutra T, Kudoh M. Microstructure and mechanical properties of NiAl intermetallic compound synthesized by reactive sintering under pressure [J]. J. Mater. Process. Technol., 1997, 63: 298
[19] Biswas A, Roy S K, Gurumurthy K R, et al. A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode [J]. Acta Mater., 2002, 50: 757
[20] Hunziker O, Kurz W. Solidification microstructure maps in Ni-Al alloys [J]. Acta Mater., 1997, 45: 4981
[21] Kwabena Adomako N, Haghdadi N, Primig S. Electron and laser-based additive manufacturing of Ni-based superalloys: a review of heterogeneities in microstructure and mechanical properties [J]. Mater. Des., 2022, 223: 111245
[22] Aprajak, Jha P, Mohapatra S K, et al. A brief review of processing techniques for NiAl intermetallic composites [J]. Mater. Today Proc., 2023, 78: 560
[23] Shang Z, Shen J, Wang L, et al. Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl-Cr(Mo) eutectic alloy [J]. Intermetallics, 2015, 57: 25
[24] Keddam M, Takenouti H, Yu N. Transpassive dissolution of Ni in acidic sulfate media: a kinetic model [J]. J. Electrochem. Soc., 1985, 132: 2561
[25] Ishwara Bhat J, Alva V D P. A study of aluminium corrosion inhibition in acid medium by an antiemitic drug [J]. Trans. Indian Inst. Met., 2011, 64: 377
[26] Prabhu D, Rao P. Garcinia indica as an environmentally safe corrosion inhibitor for aluminium in 0.5 M phosphoric acid [J]. Int. J. Corros., 2013, 2013: 945143
[27] Chen X N, Wang X H, Fang D. A review on C1s XPS-spectra for some kinds of carbon materials [J]. Fullerenes Nanotubes Carbon Nanostruct., 2020, 28: 1048
[28] Fang D, He F, Xie J L, et al. Calibration of binding energy positions with C1s for XPS results [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2020, 35: 711
[29] Mansour A N, Melendres C A. Characterization of α-Ni(OH)2 by XPS [J]. Surf. Sci. Spectra, 1994, 3: 255
[30] Bagus P S, Nelin C J, Brundle C R, et al. Main and satellite features in the Ni 2p XPS of NiO [J]. Inorg. Chem., 2022, 61: 18077
doi: 10.1021/acs.inorgchem.2c02549 pmid: 36321847
[31] Tian J, Xu L H, Sun W, et al. Use of Al2(SO4)3 and acidified water glass as mixture depressants in flotation separation of fluorite from calcite and celestite [J]. Miner. Eng., 2019, 137: 160
doi: 10.1016/j.mineng.2019.04.011
[32] Rotole J A, Sherwood P M A. Nordstrandite (Al(OH)3) by XPS [J]. Surf. Sci. Spectra, 1998, 5: 32
[33] Matthews D. The stern-geary and related methods for determining corrosion rates [J]. Aust. J. Chem., 1975, 28: 243
[34] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008
[35] Hoar T P. The study of cathodic reactions in metallic corrosion [J]. Trans. Electrochem. Soc., 1939, 76: 157
[36] Bockris J O M, Potter E C. The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions [J]. J. Chem. Phys., 1952, 20: 614
[37] Sato N, Okamoto G. Kinetics of the anodic dissolution of nickel in sulfuric acid solutions [J]. J. Electrochem. Soc., 1964, 111: 897
[38] Barbosa M R, Real S G, Vilche J R, et al. Comparative potentiodynamic study of nickel in still and stirred sulfuric acid-potassium sulfate solutions in the 0.4-5.7 pH range [J]. J. Electrochem. Soc., 1988, 135: 1077
[39] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002
[40] Rotole J A, Sherwood P M A. Corrundum (α-Al2O3) by XPS [J]. Surf. Sci. Spectra, 1998, 5: 11
[1] WU Yang, AN Yiqiang, WANG Liwei, CUI Zhongyu. Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[2] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[3] ZHANG Yunjun, JIANG Youwei, ZHANG Zhongyi, LV Naixin, CHEN Junwei, LIAN Guofeng. Initial Corrosion Behavior of 3Cr Alloy Steel in Urea Assisted Heavy Oil Steam Huff and Puff Environments[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[4] LENG Wenjun, SHI Xizhao, XIN Yonglei, YANG Yange, WANG Li, CUI Zhongyu, HOU Jian. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[5] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[6] HE Yi, ZHENG Chuanbo, QI Haoyu, LIU Zhenguang. Corrosion Behavior of TP2 Red Copper in Simulated Organic Acids Containing Industrial Environments[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
[7] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[8] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[9] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[10] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[11] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[12] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[13] WANG Tengyu, ZHANG Zhenggui, LU Weizhong, WU Xige. Effect of Alternating Pressure on Electrochemical Behavior of Solvent-free Epoxy Coating in Simulated Ultra-deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[14] WANG Xiaohong, LI Zishuo, TANG Yufeng, TAN Hao, JIANG Yangang. Influence of Cr Content on Characteristics of Corrosion Product Film Formed on Several Steels in Artifitial Stratum Waters Containing CO2-H2S-Cl-[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[15] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
No Suggested Reading articles found!